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Executive summary 

Long-lived software systems often undergo evolution over an extended period of time. 
Evolution of these systems is inevitable as they need to continue to satisfy changing 
business needs, new regulations and standards, and the introduction of novel 
technologies. Once the system is put in operation, new requirements emerge and 
existing requirements change. Parts of the software may have to be modified to correct 
errors that are found in operation, to adapt it for a new platform and to improve its 
performance or other non-functional properties.  

Software systems inevitably have to change if they are to remain useful, but the 
change may undermine the security of the systems. It is thus important to design 
software systems that are evolvable and secure. 

This report reviews the current approaches to software evolution, security requirements 
engineering, requirements evolution, evolution in access control, and presents new 
research strands in software evolution.  
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1  Introduction 

Software systems are undergoing continuing change and rapid revolution to respond to 
the changes in the environment, changes in user needs, developing concepts and 
advancing technologies [1]. Once software is put in operation, new requirements 
emerge and existing requirements change. Parts of the software may have to be 
modified to correct errors that are found in operation, to adapt it for a new platform and 
to improve its performance or other non-functional properties.  

Software evolution, thus, is driven by changes that can affect the different artifacts 
produced during the software engineering process. The traditional WRSPM model [2] 
assumes five main artifacts: 

• domain knowledge (W)  that provides presumed environment facts;  

• requirements  (R) that indicate what the customer needs from the system, 
described in terms of its effect on the environment;  

• specifications (S)  that provide enough information for a developer to build a 
system that satisfies the requirements;  

• a program  (P) that implements the specification using the programming platform; 
and a programming platform  (M) that provides the basis for programming a 
system that satisfies the requirements and specifications.  

Changes in such model are based on the traditional waterfall model of software 
engineering [3] where a change in one of the artefact from an earlier stage are seen a 
cause of change in the artefact from later stages1: 

Changes of the domain knowledge may result in changes to the requirements, the 
specification and the program associated with a system. Examples of domain 
knowledge changes include changes of the business processes associated with the 
system, upgrades to the hardware or operating system, changes in the platform, and 
changes in privacy and security laws and regulations.  

Changes of requirements evolve because organizational, business and user needs 
change, because the operating environment change or because of errors and 
inconsistencies in the program. Changes of requirements often result in changes in 
system specification and program. For example, when requirements change also 
security policies change [4], and viceversa in order to preserve the security of the 
system.  

Changes of the specifications are determined by changes in the requirements. They 
include changes to the software architecture, e.g the addition, the removal or the 
modification of system functionalities, the update or the modification of the security 
policies protecting the system. 

Changes of the program are changes to the source code that may be the result of 
changes in the requirements and in the specification of the system.  

                                                        
1 The changes to the programming platform can also be considered as changes of the domain knowledge.  
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Current research in software evolution has investigated evolution as change in 
specification and in the program, but evolution as change in requirements has received 
little attention from the research community. Another important aspect that has not 
been considered by the research community is how to support systems evolution while 
preserving the security of the systems. In fact, if on one side, software systems 
inevitably have to evolve to remain useful, on the other side, the change may 
undermine their security. 

A further observation is that such model of waterfall change is also obsolete from the 
point of view of the classification of changes. We just make two examples here. At first 
we should consider not just the program and the programming platform as the “final” 
artefact but rather the full socio-technical system that is implemented [8]. A second 
issue is that changes might happen at different levels independently from each other 
(unless everything is considered a requirement). Changes in the program’s APIs might 
be due to changes in the threat model (countering new forms of buffer overflows) or 
due to upgrade of the operating systems. The reader will not find a new model in this 
report. This is the task of the conceptual model of SecureChange. 

The report is organized as follows.   

Appendix A is a background document, realized before the start of the project, that 
summarize the state-of-the-art about general requirements evolution, and discusses 
some of the research issues related to this topic. The main research strands identified 
are related to the identification of the causes dictating the change of requirements, the 
infrastructure for requirements evolution, and the design process. One of the major 
causes for requirements to change is the introduction of new laws and regulations for 
privacy, security, governance and safety. Thus, research efforts should be devoted to 
the developing of tools and techniques for systematically extracting requirements from 
laws and regulations in order to prove requirements compliance to such laws and 
regulations. An infrastructure for requirements evolution should include tools for 
version control, configuration management and visualization that have to 
accommodate the kinds of models used to represent requirements. Designs should be 
characterized by a high variability and modularity to be suited for evolution. High 
variability means supporting alternative designs for a given functionality. Highly 
modularity means that a system can have some of its components change with low 
impact on other components.  

Appendix B is a focussed review on the notion of security requirements engineering. 
The appendix discusses open research issues and challenges that may need to be 
addressed in order to achieve the goal of security engineering for evolving software 
systems. One of the main challenges has been identified is the need for an approach 
for reasoning about both software evolution and security engineering. A cross 
fertilisation of approaches to managing software evolution with security requirements 
engineering is proposed as one way to address the problem of violating security 
requirements as result of evolution. Other challenges identified are designing change 
tolerant software systems, non-monotonicity of evolving software systems and secure 
evolution for adaptive software.   

Finally, Appendix C analyzes which are the causes of evolution in access control 
systems and provides an overview of the approaches to manage their evolution.  
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Abstract. Requirements evolution is a research problem that has re-
ceived little attention hitherto, but deserves much more. For systems to
survive in a volatile world, where business needs, government regulations
and computing platforms keep changing, software systems must evolve
too in order to survive. We discuss the state-of-the-art for research on
the topic, and predict some of the research problems that will need to be
addressed in the next decade. We conclude with a concrete proposal for
a run-time monitoring framework based on (requirements) goal models.

Keywords: Requirements, evolution, monitoring, satisfiability.

1 Introduction

It has been known for decades that changing requirements constitute one of the
greatest risks for large software development projects [1]. That risk manifests itself
routinely in statistics on failure and under-performance for such projects. “Chang-
ing requirements”usually refers to thephenomenonwhere stakeholderskeep chang-
ing their minds on what they want out of a project, and where their priorities lie.
Little attention has been paid to post-deployment requirements changes1, occur-
ring after a system is in operation, as a result of changing technologies, operational
environments, and/or business needs. In this chapter we focus on this class of re-
quirements changes and we refer to them as requirements evolution.

Evolution is a fact of life. Environments and the species that operate within
them – living, artificial, or virtual – evolve. Evolution has been credited with the
most advanced biological species that has lived on earth. The ability to evolve has
also come to be treated as a prerequisite for the survival of a species. And, yet, evo-
lution of the software systems species has only been studied at the level of code and
design, but not at the level of requirements. In particular, there has been consid-
erable research on software evolution, focusing on code reengineering and migra-
tion, architectural evolution, software refactoring, data migration and integration.
1 . . . with the notable exception of research on traceability mechanisms. Of course, trace-

ability is useful for evolving requirements, but doesn’t actually solve the problem.

K. Lyytinen et al. (Eds.): Design Requirements Workshop, LNBIP 14, pp. 186–214, 2009.
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However, the problem of post-deployment evolution of requirements (as opposed
to architecture, design and/or code) hasn’t made it yet into research agendas (see,
for example, the topics that define the scope of a recently held workshop on “Dy-
namic Software Evolution”, http://se.inf.ethz.ch/ moriol/DSE/About.html).

There are important reasons why requirements evolution is about to become a
focal point for research activity in Software Engineering. The change from local,
isolated communities to the global village isn’t happening only for commerce,
news and the environment. It is also happening for software systems. In the past,
operational environments for software systems were stable, changes were local,
and evolution had only local impact. Today, the operational environment of a
growing number of software systems is global, open, partly unknown and always
unpredictable. In this context, software systems have to evolve in order to cope
(“survive” is the technical term for other species). Some of this evolution will
be at the code level, and some at the architectural level. The most important
evolution, however, will have to take place at the requirements level, to ensure
that a system continues to meet the needs of its stakeholders and the constraints
– economic, legal and otherwise – of its operational environment.

An obvious implication of the rise to prominence of requirements evolution is
that the research to be conducted will have to be inter-disciplinary. Researchers
from Management, Organizational Theory, Sociology and Law will have to be
part of the community that studies root causes for change and how to derive
from them new requirements. Evolution mechanisms and theories that account
for them have been developed in Biology, Engineering, Organizational Theory
and Artificial Intelligence. Some of these may serve as fruitful starting points for
the research to be done.

A precondition for any comprehensive solution to the problem of evolving
requirements is that design-time requirements are properly captured and main-
tained during a system’s lifecycle, much like code. Accordingly, we (optimisti-
cally) predict that the days of lip service to requirements are coming to an end, as
Software Engineering Research and Practice opt for lasting technical solutions in
a volatile world. Growing interest in topics such as autonomic software, semantic
web services, multi-agent and/or adaptive software, peer-to-peer computing (. . .
and more!) give some evidence that this optimism is not totally unwarranted.

The main objective of this chapter is to review the past (section 2) and suggest
a research agenda on requirements evolution for the future (section 3). After a gen-
eral discussion of topics and issues,we focus on one itemof this agenda –monitoring
requirements – to make the discussion more concrete. The remainder of the paper
presents some of our on-goingworkon the problem ofmonitoring requirements and
generating diagnoses. Technical details of this work have been presented in [2].

2 The Past

In the area of software evolution, the work of M. Lehman [3] stands out, with
a proposal backed by empirical data for laws of program evolution. These laws
offer a coarse grain characterization of types of software and the nature of its
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evolution over its lifetime. Lehman’s work on program evolution actually started
with a study of the development of OS/360, IBM’s flagship operating system in
the late 60s. The study found that the amount of debugging decreased over time
and concluded that the system would have a troubled lifetime, which it did. A few
years later, Fred Brooks (academic, but also former OS/360 project manager)
excoriated the IBM approach to software management in his book “The Mythical
Man Month” [4]. Using Lehman’s observations as a foundation he formulated his
own “Brooks’ Law”: adding manpower to a late software project makes it later;
all software programs are ultimately doomed to succumb to their own internal
inertia. Fernandez-Ramil et al. [5] offers a comprehensive collection of recent
research on the topic of software evolution.

As noted in the introduction, the focus of much of the research on software
evolution has been on the code. Few software systems come with explicit links to
requirements models. Pragmatically, it is simpler to understand system evolution
by examining code artifacts – files, classes, and possibly UML diagrams. For
example, Gı̂rba and Ducasse [6] present a metamodel for understanding software
evolution by analysing artifact history. Their discussion pays little attention to
the problem domain, likely because there is no clear way of reconstructing it.
Similarly, Xing and Stroulia [7] use class properties to recapitulate a series of
UML class diagrams to detect class co-evolution. Again, this study pays no
attention to the causes of these changes, some of which relate to requirements.

We begin this section with a discussion of work that first identified the is-
sue of requirements evolution, summarizing various attempts to characterize the
problem using frameworks and taxonomies. We conclude with a look at cur-
rent approaches to managing evolving requirements, including module selection,
management, and traceability.

2.1 Early Work

When discussing the drivers behind an evolving model, and ways of managing
that evolution, there are many definitions and terminologies in use. Various re-
searchers have attempted to categorize the phenomena of evolving systems, the
majority of whom come from the software maintenance community. The impor-
tance of requirements models throughout the software lifecycle has long been rec-
ognized. Basili and Weiss [8] reported that the majority of changes to a system
requirements document were trivial, requiring less than three hours to implement.
However, a few errors required days or weeks to resolve. Similarly, Basili and Per-
ricone [9] report that of errors detected in a system during implementation, 12%
were due to poor requirements (and 36% due to poor specifications). Rather than
present an overarching temporal list, we categorize pertinent research into cate-
gories and draw distinctions between them. The majority of these papers present
viable approaches to understanding the concepts involved. Where there are dif-
ferences, they are typically the result of different perspectives.

Harker et al. [10] classifies requirements into:

1. enduring – core to the business;
2. mutable – a product of external pressures;



Requirements Evolution and What (Research) to Do about It 189

3. emergent – surfaced during thorough elicitation;
4. consequential – identified after product implementation;
5. adaptive – requirements that support system agility; and finally,
6. migration requirements – those which help during the changeover.

Where Rajlich and Bennett [11] and Lientz and Swanson [12] (see below) are dis-
cussing the process (actions) of managing these changing requirements, Harker
et al. are focusing on the structure of those requirements. There are many terms
one might apply to change and evolution in software. Rowe et al. [13] define
evolvability as “a system’s ability to accept change”, with the addition of the
constraints that it be a least-cost change, as well as one preserving the integrity
of the architecture. It isn’t made clear why the preservation of architectural form
is important – perhaps for backwards compatibility.

They mention four properties of evolvability: generality, adaptability, scal-
ability, and extensibility. There is a two-way relationship among these. From
generality to extensibility there is an increasing amount of change required for a
given requirement; from extensibility to generality there is a increasing amount
of up-front cost. In other words, to build an extensible system is initially cheap,
but costly when the change needs to be made, since radical extensions to the
architecture are required. This dimension characterizes a given system in terms
of an architectural state space – similar to the ‘space of action possibilities’
described in Vicente [14, p. 123].

Another state space model is covered in Favre [15], which presents a ‘3D’
model of evolution. The three dimensions are model abstraction (model, meta-
model, etc.), engineering/implementation, and representation. Each dimension
has an associated series of stages, and Favre uses the intersection of these dimen-
sions to map a particular product in a software space. For example, engineering
stages consist of requirements, architecture, design and implementation – the
traditional phases of software development. If we talk about a system at the
meta-level of requirements, with an implicit representation, an example might
be a conceptual metamodel such as the UML metamodel.

Favre suggests the importance of combining these orthogonal dimensions is
for understanding how the various dimensions co-evolve. For example, it is im-
portant to consider whether the specification is co-evolving with the implemen-
tation, whether the modeling language is keeping pace with the technology, etc.
As Favre concludes, it is important to remember that ‘languages, tools, and
programs evolve in parallel’.

To understand the motivations behind making changes to a system, a seminal
work in the field of software maintenance is Swanson [16] (see also Lientz and
Swanson [12]). They categorize software evolution into adaptive (environmental
changes), corrective and perfective (new internal requirements) maintenance.
Later work has added the notion of preventive maintenance. The context in
which this work was done differs greatly from today; however, this division can
be a useful way of understanding the nature of the changes in the environment
which provoke reaction in the system.
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Rajlich and Bennett [11] propose a different model, reflecting their belief that
the post-delivery lifecycle is more complex than the term ‘maintenance’ reflects.
They divide the post-delivery phase into four stages: evolution (major updates),
servicing (corrective maintenance), phaseout, and closedown. Such a model re-
flects activities undertaken by companies like Microsoft and its Windows family
of products. A requirements model is involved at the evolution (and possibly
the servicing) stage. This model may be at odds with more agile development
techniques, although there is a lack of research into the implications of agile
techniques for software maintenance (although see Svensson and Host [17] for a
preliminary assessment).

The process of managing change is also the subject of Nelson et al. [18]. They
talk about flexibility in the context of business processes. Successful organiza-
tions (and their systems) exhibit adaptability, or the willingness to ‘engage the
unfamiliar’. Flexibility is the ability of such a system to handle change pressures
and adapt. This is characterized as either structural or procedural. There are sev-
eral determinants of each. Structural flexibility relies on modularity, or design
separation; change acceptance, the degree to which the technology has built-
in abilities to adapt; and consistency, the ability to make changes painlessly.
Procedural flexibility is determined by the rate of response, system expertise
(up-to-date knowledge), and coordinated action. Together, these characteristics
define what it means for a system to adapt to a given change event. High levels
of the preceding characteristics imply a high affinity to accommodate change.

Many proposed requirements engineering frameworks ignore change accep-
tance, relying on users to understand the nature of the change, and manually
incorporate it. Buckley et al. [19] offer a taxonomy that describes the HOW,
WHEN, WHERE and WHAT questions of software evolution (but not WHY
or WHO). They suggest that such a taxonomy will help in understanding the
mechanisms of the change, with a view to designing strategies for accommo-
dating these processes. They categorize these questions into four dimensions of
software change: change support, temporal change properties, object of change,
and system properties. They analyze three tools which have seen evolution along
the lines of the taxonomy. Requirements change is not specifically mentioned,
but can be thought of as driving temporal change properties – e.g., a change in
the environment will drive a change in the software.

In an attempt to bring together various software maintenance taxonomies,
Chapin et al. [20] propose a high-level taxonomy for understanding the types of
activities that occur in this area. The ontology is based on an impact model,
examining evolution in the context of change to business processes and change
to software (presumably this can be extended to refer to software-based system).
They classify change events into a cascading, 4-part hierarchy of 12 categories,
reflecting what they say is the wide diversity of concepts that exist in research
and practice. Extending from perfective, adaptive, and corrective, they include
four categories: support interface, documentation, software properties, and busi-
ness rules.
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For example, within business rules they define three changes: reductive, cor-
rective, and enhancive. Their business rules category has the closest relationship
to the concept of requirements. Changes in this category also have the high-
est impact on both software and business processes. According to this defini-
tion then, requirements changes will have the greatest cost for an organization.
This idea certainly fits with the research findings suggesting that fixing require-
ments problems consistitute by far the largest cost in system maintenance (e.g.,
see Standish reports, although these are of uncertain research value). However,
Chapin et al. do not explicitly discuss requirements. For example, they men-
tion ‘change requests’, user-driven needs, as drivers, but make no reference to
updated requirements. They also distinguish between maintenance – changes in
the first 3 categories – and evolution, which (in their definition) primarily affects
business rules. This is certainly the sense this chapter refers to.

Many of the prior papers mention requirements only because an implicit
change in requirements has driven some corresponding change in the imple-
mented software system. However, our research is concerned with the nature
of these requirements changes. This was also the subject of research by Mas-
simo Felici. In [21], he refers to requirements evolving in the early phases of
a system, with perfective maintenance occurring toward the end of a system’s
lifespan. However, this view is at odds with the current view of requirements as
something that exists throughout the project lifecycle.

In [22], the analysis begins with the observation that requirements frameworks
generally do a poor job handling evolving requirements. The PROTEUS classi-
cation of requirements evolution (that of Harker et al.) is presented as a way to
understand how requirements evolve. A requirement is either stable or chang-
ing. If the latter, it can be one of five subtypes: mutable, due to environmental
factors; emergent, due to stakeholder engagement; consequential, resulting from
the interaction of system and environment; adaptive, due to task variation; and
migration, arising from planned business changes. This taxonomy of causes of
requirements evolution is fairly concise yet comprehensive. Felici also discusses
the similar causal taxonomy of Sommerville and Sawyer [23], which they term
‘volatile requirements’. Sommerville and Sawyer use the categories of mutable,
emergent, consequential, and compatibility requirements. Similarly, [24] presents
the EVE framework for characterizing change, but without providing specifics
on the problem beyond a metamodel.

2.2 Requirements Management

Requirements management studies how best to control the impacts of change
on requirements. Properly managing change events — such as new stakeholder
requirements — can be essential to reducing the amount of model evolution that
occurs. A key research contribution in this area is a better understanding of how
exactly these external pressures manifest themselves.

For example, Stark et al. [25] discuss change to requirements during the sys-
tem release process. A release can be a minor version of an existing product, so
this is a legitimate use of the term requirements evolution. They were responsible
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for the development of missile warning software. The study produced some in-
valuable information on how change was occurring in the project: for example,
108 requirements were changed, and of this figure, 59% were additions (scope
creep). They attempt to produce a predictive model of changes, but it isn’t clear
how generalizable such a model would be.

Similar research is reported by Basili and Weiss [8], in the context of another
military project, the A-7 control software. They describe the nature of require-
ments changes on the project. The biggest issue seemed to be that many of the
facts used in the requirements document were simply incorrect (51% of errors).
They also categorize the errors from trivial to formidable. Although only one of
the latter was encountered, it required 4 person-weeks of effort to resolve.

Lormans et al. [26] motivates a more structured approach to requirements
management. They used a formal requirements management system, but en-
countered difficulty in exchanging requirement models with clients. Such ‘mod-
els’ were often in text form, or semi-structured representations. They propose a
more elaborate management model that can address some of these challenges.

Wiegers [27] discusses four common tools for requirements management. To
some degree each support the notion of managing evolving requirements. There
is a question as to how well these tools reflect the reality in the code. Typi-
cally the tools store requirements as objects or relations, and then allow various
operations, such as mapping to test suites or design documents. The biggest
challenge is often maintaining traceability links between requirements and im-
plementation. Roshandel et al. [28] discuss one approach for managing architec-
tural evolution in sync with code. Another approach is to ignore everything but
the source code, and reverse engineering requirements from there, as described
in Yu et al. [29]. Finally, managing requirements will require configuration man-
agement tools similar to CVS, Subversion, and other code repositories. Tools
like diff or patch need analogues in the model domain. Work in model merging,
e.g., Niu et al. [30] will be important here.

Another emerging issue is the design of dynamic, adaptive software-based
system. We discuss one approach to design such a system in section 4. Such
systems are composed of multiple components, which may not be under one’s
direct control. Such systems are often categorized as Software as Service (SaaS)
or Service-Oriented Architecture (SOA) domains. For these domains, we view re-
quirements as the business drivers that specify which components, and in what
priority, should be composed. A paper by Berry et al. [31] provides a useful
‘four-level’ characterization of the nature of the compositions and adaptations
involved: the levels correspond to who (or what) is doing the requirements anal-
ysis: 1) the designer, on the domain; 2) the adaptive system, upon encountering
some new condition; 3) the designer of the system, attempting to anticipate the
nature of the second adaptation; or 4) a designer of new adaptation mechanisms.

Composing these components (or agents, or services) is an emerging research
problem, and one in which requirements evolution will have a major role. Work
on software customization Liaskos [32], for example, provides some insight into
techniques for managing such composition, although it ignores the problem of
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changes in the underlying requirements themselves. Related work in Jureta et al.
[33] makes more explicit the idea that requirements cannot be fully specified prior
to system implementation. They characterize this approach as one in which
there is only one main requirement for the system, namely, that the system
be able to handle any stakeholder requirement. Determining which stakeholder
requirements are reasonable (i.e., within system scope) will be an important
research problem.

Recent work has focused on Commercial Off-The-Shelf (aka COTS) compo-
nents. A change in one component, driven by an evolution in a particular re-
quirement, might impact other components. Etien and Salinesi [34] term this
co-evolution. It is a challenge to integrate these COTS-based systems in such an
environment:

[COTS-based systems] are uncontrollably evolving, averaging up to 10
months between new releases, and are generally unsupported by their
vendors after three subsequent releases. (Boehm [35, p. 9])

The work that led to that analysis, Yang et al. [36], discusses the issue of
COTS-based software and requirements. They claim that defining requirements
before evaluating various COTS options prematurely commits the development
to a product that may turn out to be unsuitable. They argue for a concur-
rent development methodology that assesses COTS feasibility at the same time
as developing the system itself. In other words, they argue for a spiral model
approach (Boehm, 1988) to developing the requirements for such systems (not
surprisingly). Nuseibeh [37] makes a similar point with his ‘Twin Peaks’ model.
A requirements management tool that provided support for understanding the
features, capabilities, and likelihood of change in various COTS products would
be invaluable in such systems. Understanding how the requirements themselves
might evolve would be one important aspect.

Traceability is an aspect of requirements management that identifies inter-
dependencies between elements in the environment to elements within a system.
Traceability is a necessary, but not a sufficient mechanism for managing evolving
requirements. Without a link, the downstream impact of requirements changes
will not be clear. Traceability can be divided into two aspects, after Gotel and
Finkelstein [38]. One needs a trace from the various phenomena in the environ-
ment, to the specification of the requirements for the system. Once specified, a
link should also be established between the specification and the implementation.
The former case is relatively less studied, and is less amenable to formalization.

Requirements monitoring, first proposed in [39], and extended in [40], is one
mechanism for tracing between requirements and code. Monitoring involves in-
serting code into a system to determine how well requirements are being met.
A monitor records the usage patterns of the system, such as numbers of li-
censes in use. This information can be extracted and used to evolve the system,
possibly dynamically. In this sense, monitors are quite similar to control instru-
mentation in, for example, industrial plants. This approach is promising, but
does assume that requirements and environmental conditions can be specified
accurately enough that monitoring is possible.
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Traceability is more difficult with non-functional requirements, because by
definition these requirements do not have quantitative satisfaction criteria. Cleland-
Huang et al. [41] discuss a probabilistic information retrieval mechanism for
recovering non-functional requirements from class diagrams. Three broad cate-
gories of artifacts are defined. A softgoal model is used to assess change impacts
on UML artifacts, and an information retrieval approach is used to generate the
traceability links between the two models. Ramesh and Jarke [42] give a lengthy
overview of empirical studies of requirements traceability.

Monitoring also has a vital role to play in the design of autonomic systems
([43]). These are systems that can can self-repair, self-configure, self-optimize
and self-protect. Of course, the ability to self-anything presupposes that such
systems monitor the environment and their performance within that environ-
ment, diagnose failures or underperformance, and compensate by changing their
behaviour.

3 A Research Agenda for 2020

So, assume that we have our operating software system and changes occur that
need to be accommodated, somehow. The changes may be in the requirements of
the system. For example, new functions need to be supported, or system perfor-
mance needs to be enhanced. Increasingly, changes to requirements are caused
by laws and regulations intended to safeguard the public’s interests in areas of
safety, security, privacy and governance. Changes may also be dictated by chang-
ing domain assumptions, such as increased workload caused by increased business
activity. Last, but not least, changes may be dictated by new or evolving tech-
nologies that require migration to new platforms. New or evolving technologies
can also open new opportunities for fulfilling business objectives, for example by
offering new forms of business transactions, as with e-commerce and e-business.

Whatever the cause for a change, there are two basic approaches for dealing
with it. The first, more pedestrian, approach to change has software engineers
deal with it. This approach has traditionally been called software maintenance
and it is generally recognized as the most expensive phase in a software system’s
lifecycle. A second approach for dealing with a change is to make the system
adaptive in the first place, so that it can accommodate changes by using internal
mechanisms, without human intervention or at least with intervention from end
users only. The obvious advantage of this approach is that it makes change more
immediate and less costly. Its main drawback, on the other hand, is that change
needs to be thought out at design time, thereby increasing the complexity of the
design. The recent focus on autonomic and/or adaptive software in the research
community suggests that we are heading for automated approaches to software
evolution, much like other engineering disciplines did decades ago.

Next, we list a number of research strands and discuss some of the problems
that lie within their scope.

Infrastructure for requirements evolution. Research and practice on
code evolution has produced a wealth of research concepts and tools. Version
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control and configuration management, reverse engineering and visualization
tools, refactoring and migration tools, among many. As indicated earlier, soft-
ware of the future will consist not only of code and documentation, but also
requirements and other types of models representing design, functionality and
variability. Moreover, their interdependencies, for example, traceability links, will
have to be maintained consistent and up-to-date for these artifacts to remain
useful throughout a system’s lifetime. Accordingly, the infrastructure for code
evolution will have to be extended to accommodate these other kinds of artifacts.
This is consistent with Model-Driven Software Engineering, as advocated by the
Object Management Group (OMG).

Focusing on requirements, an infrastructure for requirements evolution will
have to include tools for version control, configuration management and visu-
alization. These tools will have to accommodate the kinds of models used to
represent requirements. These models range from UML use cases that represent
functional aspects of the system-to-be, all the way to goal models that capture
stakeholder needs and rationalize any proposed functionality for the system-to-
be. The problem of evolving traceability links from requirements to code has
already been dealt with in the work of Jane Cleland-Huang and her colleagues
(e.g., [44, 41, 45]).

Understanding root causes for change. We are interested here in char-
acterizing generic root causes for change that dictate requirements evolution.
For example, businesses are moving into network-based business models, such
as service value networks and ecosystems. Such trends are bound to generate a
host of new requirements on operational systems that will have to be addressed
by requirements engineers and software reengineers. As another example, Gov-
ernments around the world have been introducing legislation to address grow-
ing concerns for security, privacy, governance and safety. This makes regulatory
compliance another major cause for requirements change. The introduction of
a single Act in the US (Sarbanes-Oxley Act) in 2002 resulted in a monumental
amount of change for business processes as well as software in business organi-
zations. The costs of this change have been estimated at US$5.8B for one year
alone (2005).

We would like to develop tools and techniques for systematically extracting
requirements from laws and regulations. In tackling this research task, it is im-
portant to note that the concepts of law, such as “right” and “obligation”, are
not requirements. Consider a law about privacy that makes it an obligation for
employers to protect and restrict the use of employee personal information stored
in their databases. This obligation may be translated in many different ways into
responsibilities of relevant actors so that the obligation is met. Each of these as-
signments of responsibility corresponds to a different set of requirements – i.e.,
stakeholder needs – that will have to be addressed by the software systems and
the business processes of an organization.

This is a broad, inter-disciplinary and long-term research strand. Some re-
search within its scope has already been done by Annie Anton, Travis Breaux
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and colleagues, e.g., [46]. This is also the topic of Alberto Siena’s PhD thesis,
see [47] for early results.

Evolution mechanisms. Once we have identified what are the changes to re-
quirements, we need to implement them by changing the system-at-hand. This
may be done manually, possibly with tool support, by developing novel reengi-
neering techniques. More interestingly, evolution may be done automatically by
using mechanisms, inspired by different disciplines (Biology, Control Theory,
Economics, Machine Learning, . . . ). Doing research along this strand will re-
quire much experimentation to evaluate the effectiveness of different evolution
techniques.

A number of research projects are working on design principles for auto-
nomic and adaptive software systems (see, for example, on-going series of ICSE
workshops on Software Engineering for Adaptive and Self-Managing Systems,
http://www.hpi.uni-potsdam.de/giese/events/2008/seams2008/). Many of these
projects employ a monitor-diagnose-compensate feedback loop in order to sup-
port adaptation of a system in response to undesirable changes of monitored
data. The inclusion of such a feedback loop in support of adaptivity introduces
the problem of designing monitoring, diagnosis and compensation mechanisms in
the architecture of software systems. Control Theory offers a rich set of concepts
of research results on how to design such loops in the realm of real-time con-
tinuous processes. Unfortunately, the development of such a theory for discrete
systems is still in its early stages (though work has been done, see for example
[48]).

Design for evolution. Some designs are better suited for evolution than others.
For example, a design that can deliver a given functionality in many different
ways is better than one that delivers it in a single way. Such designs are said to
have high variability.

Variability is an important topic in many scientific disciplines that study
variations among the members of a species, or a class of phenomena. In fact,
the theory of evolution as presented by Darwin [49] holds that variability exists
in the inheritable traits possessed by individual organisms of a species. This
variability may result in differences in the ability of each organism to reproduce
and survive within its environment. And this is the basis for the evolution of
species. Note that a species in Biology corresponds to a high variability software
system in Software Engineering, while an individual organism corresponds to a
particular configuration of a high variability software system.

Variability has been studied in the context of product families [50], where vari-
ation points define choices that exist within the family for a particular feature
of the family. The space of alternative members of a family can be characterized
by a feature model [51]. Feature models capture variability in the design space
of a product family, or a software system for that matter. They tell us what
configurations of features are consistent and can co-exist within one configura-
tion. For example, variation points may arise from the operating platform on
which a family member will run (Windows, Linux, MacOS), or the weight of the
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functionality offered (personal, business, pro). Problem variability, on the other
hand, focuses on variability in the problem to be solved. For instance, schedul-
ing a meeting may be accomplished by having the initiator contact potential
participants to set a time and location. Alternatively, the initiator may submit
her request to a meeting scheduler who does everything. The alternatives here
characterize the structure of the problem to be solved and have nothing to do
with features that the system-to-be will eventually have.

Designing for variability through analysis of both the problem and design
space will remain a fruitful area of research with Requirements Engineering. See
[32] for a PhD thesis that focuses on problem variability.

Variability of biological species changes over time, as variants are created
through mutation or other mechanisms, while others perish. We need compara-
ble mechanisms for software through which the set of possible instances for a
software system changes over time. In particular, it is important to study two
forms of variability change: means-based variability, and ends-based variability.

Means-based variability change leaves the ends/purpose of a software system
unchanged, but changes the means through which the ends can be achieved.
For example, consider a meeting scheduling system that offers a range of alter-
natives for meeting scheduling (e.g., user/system collects timetable constraints
from participants, user/system selects meeting timeslot). Means-based variabil-
ity may expand the ways meetings can be scheduled, for example, by adding
a ”meeting scheduling by decree” option where the initiator sets the time and
expects participants to re-arrange their schedules accordingly.

Ends-based variability change, on the other hand, changes the purpose of
the system itself. For instance, the meeting scheduler needs to be turned into
a project management software system, or an office management toolbox. In
this case, care needs to be exercised in managing scarce resources (e.g., rooms,
people’s time). Desai et al. [52] offers a promising direction for research on this
form of variability change. Along a different path, Rommes and America [53]
proposes a scenario-based approach to creating a product line architecture that
does take into account possible long-term changes. through the use of strategic
scenarios.

Modularity is another fundamental trait of evolvable software systems. Mod-
ularity has been researched throughly since the early 70s. A system is highly
modular if it consists of components that have high (internal) cohesion and
low (external) coupling. A highly modular system can have some of its compo-
nents change with low impact on other components. Interestingly, Biology has
also studied how coupling affects evolution. In particular, organisms in nature
continuously co-evolve both with other organisms and with a changing abiotic
environment. In this setting, the ability of one species to evolve is bounded
by the characteristics of other species that it depends on. Accordingly, Kauff-
man [54] introduces the NKC model, named after the three main components
that determine the behaviors of species’ interaction with one another. According
to the model, the co-evolution of a system and its environment is the equilib-
rium of external coupling and internal coupling. [55] presents a very preliminary
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attempt to use this model to account for the co-evolution of software systems
along with their environment.

Modularity and variability are clearly key principles underlying the ability
of a species to evolve. It would be interesting to explore other principles that
underlie evolvability.

There are deeper research issues where advances will have a major influence
on solutions for the problem-at-hand. We mention three such issues:

Science of design. According to H. Simon’s vision [56], a theory of design that
encompasses at least three ingredients: (a) the purpose of an artifact, (b) the
space of alternative designs, (c) the criteria for evaluating alternatives. Design
artifacts that come with these ingredients will obviously be easier to evolve.

Model evolution. Models will be an important (perhaps the) vehicle for dealing
with requirements evolution. Unfortunately, the state-of-the-art in modeling is
such that models become obsolete very quickly, as their subject matter evolves.
In Physics and other sciences, models of physical phenomena do not need to
evolve because they capture invariants (immutable laws).

We either need here a different level of abstraction for modeling worlds of in-
terest to design (usually technical, social and intentional), so that they capture
invariants of the subject matter. Alternatively, we need techniques and infras-
tructures for model evolution as their subject matter changes.

Evolutionary design.2 Extrapolating from Darwin’s theory of evolution where
design happens with no designer [57], we could think of mechanisms through
which software evolves without any master purpose or master designer. An ex-
ample of non-directed design is the Eclipse platform (eclipse.org). Rather than
one centrally directed, purpose-driven technology, Eclipse has evolved into an
ecology supporting multiple components, projects and people, leveraging the
advantages of open-source licences. These software ecologies act as incubators
for new projects with diverse characteristics. It would be fruitful to understand
better the evolutionary processes taking place in these ecologies and invent other
mechanisms for software evolution that do not involve a single master designer
(also known as intelligent design in some places . . . ) This is in sharp contrast to
Simon’s vision. At the same time, this is an equally compelling one.

4 Monitoring Requirements

Requirement monitoring aims to track a system’s runtime behavior so as to
detect deviations from its requirement specification. Fickas and Feather’s work
([58, 39]) presents a run-time technique for monitoring requirements satisfac-
tion. This technique identifies requirements, assumptions and remedies. If an
assumption is violated, the associated requirement is denied, and the associated
remedies are executed. The approach uses a Formal Language for Expressing As-
sumptions (FLEA) to monitor and alert the user of any requirement violations.
2 . . . or, “Darwin’s dangerous idea” [57].
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Along similar lines, Robinson has proposed a requirements-monitoring frame-
work named ReqMon [59]. In this framework, requirements are represented in
the goal-oriented requirements modeling language KAOS [60] and through sys-
tematic analysis techniques, monitors are extracted that are implemented in
commercial business process monitoring software.

We present an alternative approach to requirements monitoring and diagno-
sis. The main idea of the approach is to use goal models to capture requirements.
From these, and on the basis of a number of assumptions, we can automatically
derive monitoring specifications and generate diagnoses to recognize system fail-
ures. The proposal is based on diagnostic theories developed in AI, notably in
Knowledge Representation and AI Planning research [61].

The monitoring component monitors requirements and generates log data
at different levels of granularity that can be tuned adaptively depending on
diagnostic feedback. The diagnostic component analyzes generated log data and
identifies errors corresponding to aberrant system behaviors that lead to the
violation of system requirements. When a software system is monitored with
low granularity, the satisfaction of high level requirements is monitored. In this
case, the generated log data are incomplete and many possible diagnoses can
be inferred. The diagnostic component identifies the ones that represent root
causes.

Software requirements models may be available from design-time, generated
during requirements analysis, or they may be reverse engineered from source
code using requirements recovery techniques (for example, Yu et al. [29]). We
assume that bi-directional traceability links are provided, linking source code to
the requirements they implement.

4.1 Preliminaries

Goal models have been used in Requirement Engineering (RE) to model and
analyze stakeholder objectives [60]. Functional requirements are represented as
hard goals, while non-functional requirements are represented as soft goals [62].
A goal model is a graph structure, where a goal can be AND- or OR- decomposed
into subgoals and/or tasks. Means-ends links further decompose leaf level goals
to tasks (“actions”) that can be performed to fulfill them. At the source code
level, tasks are implemented by simple procedures or composite components that
are treated as black boxes for the purposes of monitoring and diagnosis. This
allows a software system to be monitored at different levels of abstraction.

Following [63], if goal G is AND/OR decomposed into subgoals G1, . . . , Gn,
then all/at-least-one of the subgoals must be satisfied for G to be satisfied.
Apart from decomposition links, hard goals and tasks can be related to each
other through MAKE(++) and BREAK(--) contribution links. If a MAKE (or
a BREAK) link leads from goal G1 to goal G2, G1 and G2 share the same (or
inversed) satisfaction/denial labels.

As an extension, we associate goals and tasks with preconditions and postcon-
ditions (hereafter effects, to be consistent with AI terminology) and monitoring
switches. Preconditions and effects are propositional formulae, in Conjunctive
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Normal Form (CNF), whose truth values are monitored and analyzed during
diagnostic reasoning. Monitoring switches can be switched on/off to indicate
whether satisfaction of the requirements corresponds to the goals/tasks is to be
monitored at run time.

The propositional satisfiability (SAT) problem is concerned with determining
whether there exists a truth assignment to variables of a propositional formula
that makes the formula true. If such a truth assignment exists, the formula is
said to be satisfiable. A SAT solver is any procedure that determines whether a
propositional formula is satisfiable, and identifies the satisfying assignments of
variables if it is.

The earliest and most prominent SAT algorithm is DPLL (Davis-Putnam-
Logemann-Loveland) [64]. Even though the SAT problem is inherently
intractable, there have been many improvements to SAT algorithms in recent
years. Chaff ([65]), BerkMin ([66]) and Siege ([67]) are among the fastest SAT
solvers available today. Our work uses SAT4J ([68]), an efficient SAT solver that
inherits a number of features from Chaff.

4.2 Framework Overview

Satisfaction of a software system’s requirements can be monitored at different
levels of granularity. Selecting a level involves a tradeoff between monitoring
overhead and diagnostic precision. Lower levels of granularity monitor leaf level
goals and tasks. As a result, more complete log data are generated, leading
to more precise diagnoses. The disadvantage of fine-grained monitoring is high
overhead and the possible degradation of system performance. Higher levels of
granularity monitor higher level goals. Consequently, less complete log data are
generated, leading to less precise diagnoses. The advantage is reduced monitoring
overhead and improved system performance.

We provide for adaptive monitoring at different levels of granularity by asso-
ciating monitoring switches with goals and tasks in a goal model. When these
switches are turned on, satisfaction of the corresponding goals/tasks is monitored
at run time. The framework adaptively selects a monitoring level by turning these
switches on and off, in response to diagnostic feedback. Monitored goals/tasks
need to be associated with preconditions and effects whose truth values are mon-
itored and are analyzed during diagnostic reasoning. Preconditions and effects
may also be specified for goals/tasks that are not monitored. This allows for
more precise diagnoses by constraining the search space.

Figure 1 provides an overview of our monitoring and diagnostic framework.
The input to the framework is the monitored program’s source code, its cor-
responding goal model, and traceability links. From the input goal model, the
parser component obtains goal/task relationships, goals and tasks to be moni-
tored, and their preconditions and effects. The parser then feeds this data to the
instrumentation and SAT encoder components in the monitoring and diagnostic
layers respectively.
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Fig. 1. Framework Overview

In the monitoring layer, the instrumentation component inserts software
probes into the monitored program at the appropriate places. At run time, the
instrumented program generates log data that contains program execution traces
and values of preconditions and effects for monitored goals and tasks. Offline,
in the diagnostic layer, the SAT encoder component transforms the goal model
and log data into a propositional formula in CNF which is satisfied if and only
if there is a diagnosis. A diagnosis specifies for each goal and task whether or
not it is fully denied. A symbol table records the mapping between propositional
literals and diagnosis instances. The SAT solver finds one possible satisfying as-
signment, which the SAT decoder translates into a possible diagnosis. The SAT
solver can be repeatedly invoked to find all truth assignments that correspond
to all possible diagnoses.

The analyzer analyzes the returned diagnoses, searching for denials of system
requirements is found. If denials of system requirements are found, they are
traced back to the source code to identify the problematic components. The
diagnosis analyzer may then increase monitoring granularity by switching on
monitoring switches for subgoals of a denied parent goal. When this is done,
subsequent executions of the instrumented program generate more complete log
data. More complete log data means fewer and more precise diagnoses, due to
a larger SAT search space with added constraints. If no system requirements
are denied, monitoring granularity may also be decreased to monitor fewer (thus
higher level) goals in order to reduce monitoring overhead. The steps described
above constitute one execution session and may be repeated.

4.3 Formal Foundations

This section presents an overview of the theoretical foundations of our frame-
work. The theories underlying our diagnostic component (presented in section
4.2) are adaptations of the theoretical diagnostic frameworks proposed in [69,
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70, 61]. Interested readers can refer to [2] for a complete and detailed account of
the presented framework.

Log Data. Log data consists of a sequence of log instances, each associated
with a specific timestep t. A log instance is either the observed truth value of
a domain literal, or an occurrence of a particular task. We introduce predicate
occa(ai, t) to specify occurrence of task ai at timestep t. For example, if literal
p is true at timestep 1, task a is executed at timestep 2, and literal q is false at
timestep 3, their respective log instances are: p(1), occa(a, 2), and ¬q(3).

Successful execution of tasks in an appropriate order leads to satisfaction of
the root goal. A goal is satisfied in some execution secession s if and only if all the
tasks under its decomposition are successfully executed in s. Goal satisfaction
or denial may vary from session to session. The logical timestep t is incremented
by 1 each time a new batch of monitored data arrives and is reset to 1 when a
new session starts.

We say a goal has occurred in s if and only if all the tasks in its decomposition
have occurred in s. Goal occurrences are not directly observable from the log
data. Instead, our diagnostic component infers goal occurrence from task occur-
rences recorded in the log. Two timesteps, t1 and t2, are associated with goal
occurrences, representing the timesteps of the first and the last executed task in
the goal’s decomposition in s. We introduce predicate occg(gi, t1, t2) to specify
occurrences of goals gi that start and end at timesteps t1 and t2 respectively. For
example, suppose goal g is decomposed into tasks a1 and a2, and we have in the
log data occa(a1, 4), occa(a2, 7) indicating that tasks a1 and a2 have occurred at
timesteps 4 and 7 respectively. Then occg(g, 4, 7) is inferred to indicate that g’s
occurrence started and ended at timesteps 4 and 7.

Theories of Diagnosis. The diagnostic component analyzes generated log
data and infers satisfaction/denial labels for all the goals and tasks in a goal
model. This diagnostic reasoning process involves two steps: (1), inferring sat-
isfaction/denial labels for goals/tasks that are monitored; and (2), propagating
these satisfaction/denial labels to the rest of the goal model. Note that if a
goal/task is not monitored, but is associated with a precondition and an effect
whose truth values are recorded in the log or can be inferred from it, then its
satisfaction/denial is also inferred from step 1.

Intuitively, a goal g can be denied in one of three ways: (1) g itself can be
denied, if it is monitored or if the truth values of its precondition and effect
are known; or (2) one of g’s children or parents is denied and the deniability
is propagated to g through AND/OR decomposition links; or (3) one of the
goals/tasks that are linked to g through MAKE(++)/BREAK(--) contribution
links is denied/satisfied, in which case the denial label is propagated to g. As
with goals, tasks get their denial labels if they themselves are denied, or if their
parents are denied and denial labels are propagated down to them.

We reduced the problem of searching for a diagnosis to that of the satisfiability
of a propositional formula Φ, where Φ is the conjunction of the following axioms:
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(1) axioms for reasoning with goal/task denials (step 1); and (2) axioms for
propagating inferred goal/task denials to the rest of the goal model (step 2).

Axiomatization of Deniability. The denial of goals and tasks is formulated
in terms of the truth values of the predicates representing their occurrences,
preconditions and effects. We introduce a distinct predicate FD to express full
evidence of goal and task denial at a certain timestep or during a specific session.
FD predicates take two parameters: the first parameter is either a goal or a task
specified in the goal model, and the second parameter is either a timestep or a
session id. For example, predicates FD(g1, 5) and FD(a1, s1) indicate goal g1
and task a1 are denied at timestep 5 and session s1 respectively.

Intuitively, if a task’s precondition is true and the task occurred at timestep
t, and if its effect holds at the subsequent timestep t + 1, then the task is not
denied at timestep t + 1. Two scenarios describe task denial: (1)3 if the task’s
precondition is false at timestep t, but the task still occurred at t; or (2) if the
task occurred at timestep t, but its effect is false at the subsequent timestep
t + 1. Task denial axioms are generated for tasks to capture both of these cases.

We illustrate task denial axioms using the following example. Consider a task
a with precondition p and effect q. If the monitoring component generates one
of the following two log data for a, task a’s denial is inferred:

Log data 1: ¬p(1); occa(a, 1)
Log data 2: p(1); occa(a, 1); ¬q(2)
The first log data corresponds to the first task failure scenario: a’s precon-

dition p was false at timestep 1, but a still occurred at 1. The second log data
corresponds to the second failure scenario: a’s precondition was true and a oc-
curred at timestep 1, but its effect q was false at the subsequent timestep 2. The
diagnostic component infers FD(a, 2) in both of these cases, indicating that task
a has failed at timestep 2.

These failure scenarios also apply to goals. Recall that goal occurrences are
indexed with two timesteps t1 and t2 that correspond to the occurrence timesteps
of the first and last executed tasks under goal’s decomposition. A goal g with
precondition p and effect q is denied if and only if (1) goal occurrence started at
t1 when p is false; or (2) after goal occurrence finished at t2 + 1, q is false.

For instance, if g is decomposed to tasks a1 and a2, the following sample log
data correspond to the two failure scenarios for goal g:

Log data 3: ¬p(1); occa(a1, 1); occa(a2, 2)
Log data 4: p(1); occa(a1, 1); occa(a2, 2); ¬q(3)
From either of the two log data, the diagnostic component infers occg(g, 1, 2),

indicating that g’s occurrence started and ended at timesteps 1 and 2 respec-
tively. Log data 3 and 4 correspond to the first and second goal failure scenarios
respectively: p is false when g’s occurrence started at timestep 1, and q is false
after g’s occurrence at timestep 3. In either of these cases, the diagnostic com-
ponent infers FD(g, 3), indicating that goal g is denied at time step 3.

3 In many axiomatizations it is assumed that occa(a, t) → p(t).
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We say a goal or a task is denied during an execution session s if the goal/task
is denied at some timestep t within s. Returning to the above examples, if
FD(a, 2) and FD(g, 3) are inferred, and if timesteps 2 and 3 fall within execu-
tion session s1, the diagnostic component further infers FD(a, s1) and FD(g, s1).
Inferring goal/task denials for an execution session is useful for efficiently prop-
agating these denial labels to the rest of the goal model.

In the AI literature, propositional literals whose values may vary from
timestep to timestep are called fluents. A fluent f can take on any arbitrary
value at timestep t + 1 if it is not mentioned in the effect of a task that is exe-
cuted at timestep t. Axioms are needed to specify that unaffected fluents retain
the same the values from timestep to timestep. An axiom is generated to specify
that if the value of a fluent f changes at timestep t, then one of the tasks/goals
that has f in its effect must have occurred at t − 1 and not have been denied
at t. In other words, the truth value of f reminds constant from one timestep
to the next, until one of the actions/goals that have f in its effect is executed
successfully. For example, consider a task a with effect q, and assume q is not
in any other goal’s/task’s effect. Suppose the log data include: ¬q(1), occa(a, 3),
and q(5). Then an axiom is generated to infer ¬q(2), ¬q(3),and q(4).

4.4 Axiomatization of a Goal Model

Goal/task denials, once inferred, can be propagated to the rest of the goal graph
through AND/OR decomposition links and MAKE/BREAK contribution links.
Axioms are generated to describe both label propagation processes.

If a goal g is AND (or OR) decomposed into subgoals g1,. . . , gn, and tasks
a1, . . . , am, then g is denied in a certain session, s, if and only if at least one (or
all) of the subgoals or tasks in its decomposition is (or are) denied in s.

Goals and tasks can be related to each other through various contribution
links: ++S, --S, ++D, --D, ++, --. Link ++ and link -- are shorthand for the ++S
and ++D, and the --S and --D relationships, respectively, and they represent
strong MAKE(++) and BREAK(--) contributions between goals/tasks. Given
two goals g1 and g2, the link g1

++S−−−→ g2 (respectively g1
−−S−−−→ g2) means that

if g1 is satisfied, then g2 is satisfied (respectively denied). But if g1 is denied,
we cannot infer denial (or respectively satisfaction) of g2. The meanings of links
++D and --D are similar to those of ++S and --S. Given two goals g1 and g2, the
link g1

++D−−−→ g2 (respectively g1
−−D−−−→ g2) means that if g1 is denied, then g2 is

denied (respectively satisfied). But if g1 is satisfied, we cannot infer satisfaction
(or respectively denial) of g2.

When contribution links are present, the goal graph may become cyclic and
conflicts may arise. We say a conflict holds if we have both FD(g, s) and ¬FD
(g, s) in one execution session s. Since it does not make sense, for diagnostic pur-
poses, to have a goal being both denied and satisfied at the same time, conflict
tolerance, as in (Sebastiani et al., 2004), is not allowed within our diagnostic
framework. In addition, the partial (weaker) contribution links HELP(+) and
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HURT(−) are not included between hard goals/tasks because we do not reason
with partial evidence for hard goal/task satisfaction and denial.

Diagnosis Defined. In our framework, a diagnosis specifies for each goal/task
in the goal model whether or not it is fully denied. More formally, a diagnosis
D is a set of FD and ¬FD predicates over all the goals and tasks in the goal
graph, such that D union Φ (D ∪ Φ) is satisfiable. Each FD or ¬FD predicate
in D is either indexed with respect to a timestep or a session. For example, if
goal g and task a are both denied at timestep 1 during execution session s1,
the diagnosis for the system would contain FD(a, 1), FD(a, s1), FD(g, 1), and
FD(g, s1).

Our diagnostic approach is sound and complete, meaning that for any D as
defined above, D is a diagnosis if and only if D ∪ Φ is satisfiable. A proof of this
soundness and completeness property can be found in (Wang et. al, 2007).

Task level denial is the core or root cause of goal level denial. In addition,
if a task is denied at any timestep t during an execution session s, it is denied
during s. Therefore, it is more useful, for purposes of root cause analysis, that
the diagnostic component infer task level denials during specific sessions. We
introduce the concept of core diagnosis to specify for each task in the goal graph
whether or not it is fully denied in an execution session. More formally, a core
diagnosis (CD) is a set of FD and ¬FD predicates over all the tasks in the
goal graph, indexed with respect to a session, such that CD ∪ Φ is satisfiable.
Consider the same example where goal g and task a are denied at timestep 1
during the execution session s1. The core diagnosis for the system would only
contain FD(a, s1), indicating that the root cause of requirement denial during
s1 is the failure of task a.

Inferring all core diagnoses for the software system can present a scalability
problem. This is because all the possible combinations of task denials for tasks
under a denied goal are returned as possible core diagnoses. Therefore, in the
worst-case, the number of core diagnoses is exponential to the size of the goal
graph. To address the scalability problem, we introduce the concept of participat-
ing diagnostic components. These correspond to individual task denial predicates
that participate in core diagnoses, without their combinations. A participating
diagnostic component, PDC, is an FD predicate over some task in the goal
model, indexed with respect to a session, such that PDC ∪ Φ is satisfiable.

In many cases, it may be neither practical nor necessary to find all core diag-
noses. In these cases, all participating diagnostic components can be returned.
However, it is also important to note that, in other cases, one may want to find
all core diagnoses instead of all participating diagnostic components. This is be-
cause core diagnoses contain more diagnostic information, such as which tasks
can and can not fail together.

Our diagnostic approach is sound and complete, meaning that it finds all
diagnoses, core diagnoses, and participating diagnostic components for the soft-
ware system. The theory outlined above has been implemented in terms of four
main algorithms: two encoding algorithms for encoding an annotated goal model
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into a propositional formula Φ, and two diagnostic algorithms for finding all core
diagnoses and all participating diagnostic components.

The difference between the two encoding algorithms lies in whether the al-
gorithm preprocesses the log data when encoding the goal model into Φ. The
naive algorithm does not preprocess log data and generates a complete set of
axioms for all the timesteps during one execution session. The problem with this
is the exponential increase in the size of Φ with the size of a goal model. The
second and improved algorithm addresses this problem by preprocessing the log
data and only generating necessary axioms for the timesteps that are actually
recorded in the log data. As demonstrated in [2], this improved algorithm per-
mits the same diagnostic reasoning process while keeping the growth of the size
of Φ polynomial with respect to the size of the goal model.

The results of our framework evaluation (subsection 4.6) show that our ap-
proach scales to the size of the goal model, provided the encoding is done with
log file preprocessing and the diagnostic component returns all participating di-
agnostic components instead of all core diagnoses. Interested readers can refer
to [2] for a detailed account of algorithms and implementation specifics.

4.5 A Working Example

We use the SquirrelMail [71] case study as an example to illustrate how our
framework works. SquirrelMail is an open source email application that con-
sists of 69711 LOC written in PHP. Figure 2 presents a simple, high-level goal
graph for SquirrelMail with 4 goals and 7 tasks, shown in ovals and hexagons,
respectively.

The SquirrelMail goal model captures the system’s functional requirements
for sending an email (represented by the root goal g1). The system first needs to
retrieve and load user login page (task a1), then process the sent mail request
(goal g2), and finally send the email (task a7). If the email IMAP server is found,
SquirrelMail loads the compose page (goal g3), otherwise, it reports IMAP not

Fig. 2. Squirrel Mail Goal Model
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Table 1. Squirrel Mail Annotated Goal Model

Goal/
Task

Monitor
switch

Precondition Effect

a1 on correctURL entered login form loaded
a2 on ¬wrongIMAP∧login form

loaded
(user logged in ∧ correct
pin) ∨ (¬user logged in ∧

¬correct pin)
a3 off user logged in form shown
a4 off form shown form entered
a5 off form entered webmail started
a6 on wrongIMAP error reported
a7 on webmail started email sent
g1 off correct URL entered email sent ∨ error reported
g2 off login form loaded ∨

wrongIMAP
webmail started ∨ error

reported
g3 off login form loaded ∧

¬wrongIMAP
webmail started

g4 on user logged in webmail started

found error (task a6). Goal g3 (get compose page) can be achieved by executing
four tasks: a2 (login), a3 (show form), a4 (enter form), and a5 (start webmail).

Table 1 lists the details of each goal/task in the SquirrelMail goal model with
its monitoring switch status (column 2), and associated precondition and effect
(columns 3 and 4). In this example, the satisfaction of goal g4 and tasks a1, a2, a6,
and a7 are monitored.

SquirrelMail’s runtime behavior is traced and recorded as log data. Recall that
log data contains truth values of literals specified in monitored goals’/tasks’ pre-
conditions and effects, as well as the occurrences of all tasks. Each log instance
is associated with a timestep t. The following is an example of log data from the
SquirrelMail case study:

correct URL entered(1), occa(a1, 2), login form loaded(3), ¬wrongIMAP
(4), occa(a2, 5), correct pin(6), user logged in(6), occa(a3, 7), occa(a4, 8),
occa(a5, 9), ¬webmail started(10), occa(a7, 11), ¬email sent(12).

The log data contains two errors (¬webmail started(10), and occa(a7, 11)): (1)
the effect of g4 (web mail started) was false, at timestep 10, after all the tasks
under g4’s decomposition (a3, a4, and a5) were executed; and (2) task a7 (send
message) occurred at timestep 11 when its precondition webmail started was
false at timestep 10. The diagnostic component analyzes the log data and in-
fers that goal g4 and the task a7 are denied during execution session s. The
diagnostic component further infers that if g4 is denied in s, at least one of
g4’s subtasks, a3, a4, and a5, must have been denied in s. The following seven
core diagnoses are returned to capture all possible task denials for a3, a4,
and a5:
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Fig. 3. Partial ATM Goal Model

Core Diagnosis 1: FD(a3, s); FD(a7, s)
Core Diagnosis 2: FD(a4, s); FD(a7, s) Core Diagnosis 3: FD(a5, s); FD(a7, s)
Core Diagnosis 4: FD(a3, s); FD(a4, s); FD(a7, s)
Core Diagnosis 5: FD(a3, s); FD(a5, s); FD(a7, s)
Core Diagnosis 6: FD(a4, s); FD(a5, s); FD(a7, s)
Core Diagnosis 7: FD(a3, s); FD(a4, s); FD(a5, s); FD(a7, s)

Instead of finding all core diagnoses, we can configure the diagnostic com-
ponent to find all participating diagnostic components. The following 4 par-
ticipating diagnostic components are returned to capture individual task
denials:

Participating Diagnostic Component 1: FD(a3, s)
Participating Diagnostic Component 2: FD(a4, s)
Participating Diagnostic Component 2: FD(a5, s)
Participating Diagnostic Component 3: FD(a7, s)
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4.6 Experimental Evaluation

In this section, we report on the performance and scalability of our framework
and discuss its limitations. We applied our framework to a medium-size public
domain software system, an ATM (Automated Teller Machine) simulation case
study, to evaluate the correctness and performance of our framework. We show
that our solution can scale up to the goal model size and can be applied to
industrial software applications with medium-sized requirements.

Framework Scalability. The ATM simulation case study is an illustration
of OO design used in a software development class at Gordon College [72]. The
application simulates an ATM performing customers’ withdraw, deposit, transfer
and balance inquiry transactions. The source code contains 36 Java Classes with
5000 LOC, which we reverse engineered to its requirements to obtain a goal
model with 37 goals and 51 tasks. We show a partial goal graph with 18 goals
and 22 tasks in Figure 3.

We conducted two sets of experiments. The first set contains five experiments
with different levels of monitoring granularity, all applied to the goal model
shown in Figure 3. This allows us to access the tradeoff between monitoring
granularity and diagnostic precision. The second set reports 20 experiments on
20 progressively larger goal models containing 50 to 1000 goals and tasks. We
obtain these larger goal models by cloning the ATM goal graph to itself. The
second set of experiments shows that our diagnostic framework scales to the size
of the relevant goal model, provided the encoding is done with log preprocessing
and the diagnostic component returns all participating diagnostic components.

The first set of experiments contains 5 runs. We gradually increased monitor-
ing granularity from monitoring only the root goal to monitoring all leaf level
tasks. For each experiment, we recorded: (1) numbers of generated literals and
clauses in the SAT propositional formula Φ; (2) the number of participating di-
agnostic components returned; and (3) the average time taken, in seconds, to
find one diagnostic component. When the number of monitored goals/tasks was
increased from 1 to 11, the number of returned participating diagnostic compo-
nents decreased from 19 and 1, and the average time taken to find one diagnostic
component increased from 0.053 to 0.390 second.

These experiments showed that diagnostic precision is inversely proportional
to monitoring granularity. When monitoring granularity increases, monitoring
overhead, SAT search space, and average time needed to find a single participat-
ing diagnostic component all increase. The benefit of monitoring at a high level
of monitoring granularity is that we are able to infer fewer participating diag-
nostic components identifying a smaller set of possible faulty components. The
reverse is true when monitoring granularity decreases: we have less overhead, but
the number of participating diagnostic components increases if the system is be-
having abnormally. When the system is running correctly (no requirements are
denied, and no faulty component is returned), minimal monitoring is advisable.

The second set of experiments, on 20 progressively larger goal models (con-
taining from 50 to 1000 goals and tasks) allows us to evaluate the scalability
of the diagnostic component. We injected one error in one of the tasks. Each
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of the experiments was performed with complete (task level) monitoring. Each
therefore returned only a single diagnostic component. In addition, all experi-
ments used the encoding algorithm that preprocesses log data. This was done to
ensure scalability. For each experiment, we recorded: (1) time taken to encode
the goal model into the SAT propositional formula Φ; (2) time taken by the SAT
solver to solve Φ plus the time taken to decode the SAT result into a diagnostic
component; and (3) the sum of the time periods recorded in (1) and (2), giving
the total time taken to find the participating diagnostic component.

Experimental results show that, as the number of goals/tasks increased from
50 to 1000, the number of literals and clauses generated in Φ increased from 81 to
1525 and from 207 to 4083 respectively. As a result, the total time taken to find
the participating diagnostic component increased from 0.469 to 3.444 seconds.
This second set of experiments shows that the diagnostic component scales to
the size of the goal model, provided the encoding is done with log preprocessing
and the diagnostic component returns all participating diagnostic components.
Our approach can therefore be applied to industrial software applications with
medium-sized requirement graphs.

Framework Limitations. Firstly, our approach assumes the correct specifica-
tion of the goal model, as well as the preconditions and effects for goals and
tasks. Errors may be introduced if specified preconditions and effects do not
completely or correctly capture the software system’s dynamics. Detecting and
dealing with discrepancies between a system’s implementation and its goal model
are beyond the scope of our work. We accordingly, assume that both the goal
model and its associated preconditions and effects are correctly implemented by
the application source code.

Secondly, the reasoning capability of our diagnostic component is limited by
the expressive power of propositional logic and the reasoning power of SAT
solvers. Propositional logic and SAT solvers express and reason using variables
with discrete values, which typically are Boolean variables that are either true or
false. As a result, our diagnostic component cannot easily deal with application
domains with continuous values.

Lastly, the reasoning power of our framework is also limited by the expres-
siveness of our goal modeling language. Goal models cannot express temporal
relations. Neither can they explicitly express the orderings of goals/tasks, or the
number of times goals/tasks must be executed. Therefore, our framework cannot
recognize temporal relations such as event patterns.

5 Conclusions

We have discussed requirements evolution as a research problem that has re-
ceived little attention until now, but will receive much attention in the future.
Our discussion included a review of past research, a speculative glimpse into
the future, and a more detailed look at on-going research on monitoring and
diagnosing software systems.
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traceability. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074,
pp. 182–196. Springer, Heidelberg (2008)

[48] Ramadge, P., Wonham, M.: Supervisory control of a class of discreteevent systems.
SIAM J. of Control and Optimization 25(1), 206–230 (1987)

[49] Darwin, C.: On the Origin of Species by Means of Natural Selection. Murray,
London (1859)

[50] Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization
techniques. Softw. Pract. Exper. 35(8), 705–754 (2005)

[51] Kang, K.C., Kim, S., Lee, J., Kim, K.: Form: A feature-oriented reuse method.
Annals of Software Engineering 5, 143–168 (1998)

[52] Desai, N., Chopra, A.K., Singh, M.P.: Amoeba: A methodology for requirements
modeling and evolution of crossorganizational business processes. Transactions on
Software Engineering and Methodology (submitted, 2008)

[53] Rommes, E., America, P.: A scenario-based method for software product line
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Abstract 

 
Long-lived software systems often undergo numerous evolutions over an extended period of time. 

Continuous evolution of these systems is inevitable as they need to continue to satisfy changing 

business needs, new regulations and standards, and introduction of novel technologies in their 

operating environment. Evolution of systems may involve changes that add, remove, or modify 

features; or that migrate the system from one operating platform to another. These changes may result 

in requirements that were satisfied in a previous release of an application not being satisfied in its 

updated version. When evolutionary changes violate security requirements, a system may be left 

vulnerable to attacks. In this paper we review current approaches to security requirements engineering 

and conclude that they lack explicit support for managing the effects of software evolution. We then 

suggest that a cross fertilisation of the areas of software evolution and security engineering would 

address the problem of maintaining compliance to security requirements of software systems as they 

evolve. We conclude the paper with a research agenda that highlights research issues that may need to 

be addressed. 

 

1. Introduction 
 

Software evolution refers to the process of continually updating software systems in response to 

changes in their operating environment and their requirements [90, 91]. These changes are often driven 

by business needs, regulations, and standards that a software application is required to continue to 

satisfy or adapt to [18, 84]. The changes to a software system may involve adding new features, 

removing, modifying existing features [20, 78], redesigning the system for migration to a new 

platform, or integration with other applications. Such changes may result in requirements that were 

satisfied in a previous release of an application being violated in its updated version [45, 46].  

 

 Security requirements engineering deals with the protection of assets from potential threats that may 

lead to harm [52]. This paper observes that current approaches to security requirements engineering 

have limited capability for preserving security properties that may be violated as a result of software 

evolution. In supporting this argument we review the state-of-the-art in both literatures of software 

evolution and security engineering, noting research challenges.  

 

In illustrating the need for security requirements engineering approaches to support software evolution, 

we consider how the introduction of a government regulation which states that only employees with 

valid work permits are allowed to work may affect a standalone payroll system.  One way to enforce 

this regulation could be to introduce a feature that allows a central immigration control system to 

access employee database records in the payroll system. Such a change, however, may require 

migrating the payroll system to a platform that supports public network access (such as the Internet) 

where it can communicate with remote applications. Allowing the immigration control application 

access to the payroll implies that immigration officers now have access to private employee data which 

were only available with the consent from the individual employees previously. Such evolution of the 

payroll system has violated the confidentiality requirements of employees.  

 

The example illustrates the need for security requirements engineering to incorporate requirements 

evolution. We suggest that one way to address the problem of violation of security requirements as 

result of evolution is a cross fertilisation of approaches to managing software evolution with security 

requirements engineering. We hope that the cross fertilisation leads to an ideal approach to security 

requirements engineering for evolving systems.  

 

However, there are a number of challenges that will have to be addressed in order to make such cross 

fertilisation a reality. The theme of these challenges is how to design software systems so that they are 

both secure and evolvable. Current research in software evolution does not explicitly address security 

issues and approaches to security requirements engineering do not provide systematic means to 
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addressing software evolution concerns. Hence addressing the challenge of secure software evolution 

will, inevitably, involve identifying promising approaches in both research fields and then finding some 

way of integrating them. We anticipate that such cross fertilisation is non-trivial as it has to strike a 

balance between security and evolution of software systems. Meeting these challenges will involve 

inventing a process for security requirements analysis in long-lived systems and a methodology for 

evolutionary requirements.  

 

The challenge of achieving security requirements engineering for evolving software systems is made 

harder by the fact that achieving software systems that both evolvable and secure can be conflicting 

goals [111]. One of the key characteristics of software evolution is that in response to new 

requirements, new features may be added to existing systems. This mandates composition of the 

existing feature set with new features. However, feature composition is non-monotonic [146]; that is, 

properties that were true of an existing system before combination with a new feature, are not 

guaranteed to hold after the addition of new functionality.  

 

The context of our work security requirements engineering and for this reason in Section 2 we attempt 

to define what software evolution might mean from a requirements engineering perspective. We do 

this by framing evolution research into a requirements engineering framework. In Section 3 we review 

the state of the art on approaches to understanding and managing requirements evolution. Section 4 

reviews approaches to eliciting and analysing security requirements and Section 5 presents a 

comparative evaluation of the extent to which security requirements engineering approaches support 

software evolution. The main objective of this survey is to identify research challenges that need to be 

addressed and to present a research agenda in order to make security requirements engineering for 

evolving systems possible. Section 6 discusses these challenges and where possible identifies 

promising approaches that could be leveraged to address them, from both software evolution and 

security requirements engineering perspectives. We present a conclusion in Section 7. 

  

2. Software Evolution from a Requirements Engineering Perspective 

 
Software evolution refers to the process of developing a software system initially and continually 

updating it due to change in its stakeholder needs and its operating environment [89-91]. In this section 

we discuss basic notions of the concept of software evolution (in section 2.1) and examine what 

software evolution means from a requirements engineering perspective. Our discussion is based on 

Zave and Jackson’s entailment relation [155] and we briefly describe this in Subsection 2.2. The 

entailment relation structures software development problems into three main elements: requirements, 

specification, and context. Subsections 2.3, 2.4, and 2.5 reviews literature that supports the notions of 

software evolution as change in context, specification, and context, respectively. Subsection 2.6 

concludes the section with a discussion of the implications of a requirements engineering perspective 

on software evolution.  

 

2.1 Basic Concepts of Software Evolution 
 

Lehman [91], one of the pioneers of software evolution research, identified several trends in software 

systems that seemed define intrinsically the nature of software systems in that they are independent of 

system stakeholders [24]. This included the observation that with time software systems tend to 

increase in size and complexity and a result of this increase their maintenance and adaptation becomes 

more challenging. Although, it is true that software systems increase in size and complexity with time, 

the view that this is somehow independent of stakeholder intentions is somehow controversial. This is 

because an increase in software size could be viewed as a reflection of an expansion to the set of 

stakeholder requirements which may in turn mean an increase in complexity. An empirical study 

conducted by Barry et al. [8]  concluded that some of Lehman’s hypotheses (called laws of software 

evolution [88, 91]) on how software system evolve were invalid. . This could be attributed to the fact 

that these hypotheses are founded on empirical studies of evolution in monolithic systems. 

 

Lehman’s theories and laws on software evolution are generic. In this section we evaluate these generic 

concepts of software evolution from a requirements engineering perspective. More specifically, we 

examine what software evolution means in terms of Jackson and Zave’s entailment relation [155] 

which describes software in terms of requirements, specification, and context. In the evaluation we 

review the literature on software evolution and attempt to classify it according to whether it views 
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software evolution as change in requirements, specification, or context. In doing so we hope to clarify 

what software evolution means in requirements engineering. 

 

2.2 Jackson and Zave’s Entailment Relation 
 

The entailment relation relates three sets of descriptions: requirements (R), domain assumptions (W), 

and specifications (S). It states that a specification satisfies a requirement given that some assumptions 

about the behaviour of the context hold (formally, S, W |- R, where “|-“ denotes entailment). A 

requirement describes a condition or capability that must be met or possessed by a system, in other 

words, its purpose. Requirements are optative descriptions in that they described how the world would 

be once the envisioned system is in place. For an electronic stability programme (ESP) feature in a car 

this could be: ‘avoid vehicle skidding when brakes are applied’.   

 

Domain assumptions describe facts about the behaviour of the environment where a system will be 

deployed. In this paper we use the term context to refer to the environment described in domain 

assumptions. In contrast to requirements, domain descriptions are indicative in that they describe 

objective truth about the context. In the ESP example this could be: ‘applying brakes continuously 

cause tires to lock’, ‘tires are mounted on the vehicle’s chassis’, and ‘locked tires lead to vehicle 

skidding’.   

 

Specifications then describe how the system should behave in order to satisfy the conditions described 

in R, given that the assumptions described in W hold. The specification for the ESP could be: “if tire 

lock occurs during braking, apply and release braking pressure at short discrete periodic intervals’.  

 

2.3 Evolution as Change in Context 
 

The operating environment or context of an application plays an important role in its evolution as it is 

one of the major drivers of evolution. This is especially true for embedded systems [23]. Examples of 

contextual changes include government regulations  [18] (as illustrated by the payroll example in 

section 1), business process models [63, 137], platforms [43], anomalies observed in the operation of 

an application resulting from incompleteness of requirements and  hardware failures or limitations 

which were not considered initially [100] and software bugs [148], and inconsistencies between 

requirements [33, 112, 128, 144].  

 

The design of a software system makes assumptions about the environment in which it will operate [31, 

43]. We illustrate this by citing examples from the literature. For example, the migration of a system 

that was originally designed to run on a Desktop PC to a mobile device has to take into account the 

limitation of resources in the new platform. The characteristics of the new mobile device platform 

forces new stringent requirements on the applications use of resources. Another source of change is 

inconsistencies that arise as features designed independently are composed [127]. Such inconsistencies 

arise due to the invalidation of assumption that each feature made about the behaviour of the context. 

For example in a smart home a security feature may require a window to be closed at night while a 

climate control feature may require the same window to be opened to maintain a cool temperature in 

the house [81]. Note that the conflict arises because of the two features sharing the same resource and 

hence is manifested on the context [111]. Inconsistencies between features can lead to system evolution 

as their resolution may require changing the requirements of each of the features involved in the 

conflict. In the example of conflicting security and climate control example, a new requirement may be 

introduced that states priority between the two features and determines which feature should be given 

control of the window in the event that a conflict occurs.  

 

We have illustrated how changes in context may lead to software evolution and shown that such 

contextual changes are translated into new requirements that an application has to satisfy in order to 

remain relevant and effective in its environment [84]. Therefore evolutionary changes in context may 

eventually be translated into new requirements and hence ‘evolution as change in context’ results in 

requirements evolution. It worth noting that an application does not only evolve to satisfy new 

requirements imposed by changes in context but may also evolve to take advantage of new features 

available in the context. For example, over the years Microsoft Word has had new functionality 

introduced due to availability of novel features as the Windows operating system evolved [62].  
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2.4 Evolution as Change in Specifications 
 

Research in software evolution has traditionally focussed on changes in source code [7, 44, 104, 124, 

156]  and software architecture [23, 31, 85, 126] as prime variables of system evolution. This has led to 

techniques such as program refactoring [28, 82, 135]  and architectural configuration management 

systems [126]. In this paper we consider software architectures and code as solutions that are designed 

to satisfy requirements of an application. Hence we classify them as specifications.  

 

While changes in context may lead to new requirements or to changes in existing requirements, in 

contrast, evolution of specifications is driven by changes in requirements [45] and as such does not 

always lead to evolution in requirements. A prime illustration of this point is code refactoring – where 

the structure of program code may be changed without changing business logic. On the other hand, a 

change in a requirement often results in a change in business logic [32, 127, 157]. 

 

Configuration management systems have been successfully applied to managing evolution at the 

source code level. Contrary, applying configuration management concepts to the evolution of software 

architectures leads to many problems as noted by Roshandel et al. [126]. In addressing this problem 

Roshandel et al. proposed an approach that combines configuration management and architectural 

concepts. Although the approach has been validated through its application to a number of projects, 

there is no evidence that its conceptual basis can be generalised to the evolution of other software 

artefacts. For example it is not known whether the combination of requirements analysis approaches 

with configuration management concepts can shed some light on the evolution of requirements. 

Roshandel et al. idea approach could be further enhanced integrating it with Chung and Sibramanian’s 

[23] approach is based on the ideas that architectural evolution can be achieved by making software 

architectures themselves evolvable.  

 

2.5 Evolution as Change in Requirements 
 

In recent years, researchers in software evolution have turned their attention to changes in stakeholder 

needs (expressed as requirements) as one of the drivers of software evolution [29, 58, 131, 157]. 

Several approaches have been proposed for supporting requirements evolution.  

 

Zowgi and Offen [157] proposed modelling and reasoning about the evolution of requirements using 

meta level logic for formally capturing intuitive aspects of managing changes to requirements models. 

The approach involves encoding requirements models as theories and reasoning about changes is 

achieved by mapping changes between requirements models. A significant limitation of this approach 

is the overhead of encoding requirements models in logic.  

 

Russo et al. [127] proposed an approach to restructuring requirements to facilitate inconsistency 

detection and change management. The approach was later extended by Garcez et al [29] to combines 

abductive reasoning and inductive learning for evolving requirements specifications. The aim of 

Garcez et al.’s approach is to preserve goals and requirements during evolution and it is based on the 

idea of analysis and revision. During analysis, a specification is checked whether it satisfies a given 

requirement using the concepts of model checking [21, 36, 94, 151]. If the current specification does 

not satisfy the requirements, diagnosis information is generated which describes on how the 

specification should be modified in order to satisfy the requirement. During revision the specification is 

changed so that it satisfies the requirement.  

 

The main feature of the analysis-revision approach is that evolutionary changes are allowed to happen 

first and their impact on satisfaction of requirements is verified as the next step. This characteristic may 

not be desirable if the evolutionary changes violate requirements in a manner that causes irreversible 

damage. The efficiency of the analysis-revision cycle is also heavily dependent on choice of good 

training examples. A related issue is that the approach does make a provision for validating the 

automatically generated diagnosis against real-world system properties. 

 

The evolution of requirements expressed in natural language is challenging as it makes it difficult to 

precisely capture requirements changes. Fabrinni et al.’s [32] approach to controlling requirements 

evolution uses formal concept analysis to enable a systematic and precise verification of consistency 

among different stages of natural language requirements evolution. Software evolution may also 

introduce inconsistencies between requirements. Ghose’s [45] framework formal approach is aimed at 
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addressing the problem of requirements inconsistencies resulting from evolution. Similar to Garcez et 

al. [29], Ghose’s approach is based on formal default reasoning and belief revision, and is supported by 

automated tools [46].  

 

This approach has interesting features for addressing requirements evolution in the context of security 

requirements engineering as it offers a basis for reasoning about the impact of change on the 

consistency between requirements. However, it is more general and not specific to addressing security 

issues. Nevertheless, its combination with an analysis and revision approach (such as that of Garcez et 

al.’s) can be useful as a basic building block for an approach to integrating requirements evolution in 

security engineering.  

 

A framework proposed by Lam and Loomes [84] suggests that one approach to the requirements 

evolution problem is to have two models: a meta model and a process model. A meta-model captures a 

set of requirements evolution concepts such as change, impact, and risk. A process model provides a 

framework for handling the emergence of new or changing requirements. While this framework seems 

a useful abstraction for approaches to requirements evolution the role of the meta-models is not well 

motivated. Only capturing the concepts of requirements evolution is not sufficient. It may be more 

useful if the meta-models provide methods and tools for analysing and eliciting change, determining 

the impact of the change and its associated risk. These meta activities can be performed through 

existing change impact analysis approaches [1, 15, 58, 124]. Lemoine and Foisseau [92] also proposed 

the use of UML meta models for recording the artefacts of the produced as a result of evolution in high 

assurance systems. Their Meta models do not only capture changes but can also be translated into 

verification rules that can be used for checking properties of an evolving system such as compatibility 

between multiple releases. Another technique proposed for validating requirements models during 

evolution is through simulation [131]. 

 

2.6 Implications for a Requirements Engineering Perspective on Software Evolution 
 
In this section we have discussed software evolution from a requirements engineering perspective. The 

objective of our discussion has been to examine what software evolution means in requirements 

engineering. Our discussion has focussed on software evolution in light of Jackson and Zave’s 

entailment relation. Through the discussion we have observed that software systems evolve with 

changing user needs and in their environment. Changes in the context of a system may lead to new 

requirements or modification of existing requirements.  

 

One the other hand, evolution in specifications does not always result in a corresponding evolution in 

requirements. This is due to the notion that requirements state stakeholder needs or the problems to be 

solved, while specifications describe the behaviour of software solutions that could satisfy the 

requirements. As a result the abstract problem stated as a requirement may remain the same even 

though its solutions may get progressively refined due to changes in context such as introduction of 

novel technologies. 

 

We envisage that the observations from our discussion may have important implications for research in 

software evolution. The main implication concerns approaches to change impact analysis. For example 

the observation that changing requirements may lead to changing specification could lead to a 

framework for understanding the impact of changes and traceability of the changes through artefacts in 

both requirements and specifications.  

 

 
 

Figure 1. Software Evolution through Entailment Relation 
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Similarly, such a change impact analysis framework could also be useful for analysing what impact 

changes in context may have on requirements and specifications. The change impact framework can be 

validated by doing more research on what the interaction is between the changes in the three elements 

of the entailment relation as illustrated in Figure 1. The arrows labelled a and b represents how changes 

in requirements impact context and how context evolution impact requirements evolution, respectively. 

Similarly, the arrows labelled c and d represent the impact of requirements evolution on specification 

evolution and impact of specification evolution on requirements, respectively. Arrow e represent the 

impact of changes in specification on context, meanwhile arrow f represents the impact of changes in 

context on specifications.. In the next section we review approaches to understanding and managing 

software evolution. 

 

3. Approaches to Understanding and Managing Software Evolution 
 

Approaches to the study of software evolution can broadly be classified into two categories: 

explanatory and management [25]. Explanatory approaches take a scientific view and are concerned 

with understanding causes, processes, and effects of software evolution. For example, these approaches 

study evolution histories of an application in order to understand how the system has changed in 

response to changes in organisational goals over time [4, 79, 85, 105]. In contrast management 

approaches take an engineering perspective and are concerned with the development of better methods 

and tools that can be used for managing the effects of software evolution.  We review explanatory and 

process improvement approaches in sections 3.1 and 3.2, respectively. 

  

3.1 Explanatory Approaches 
 
In this section we review exploratory approaches and classify them into two categories based on the 

type of data they use. The first category use historical data such as changes in source code over a 

period of time and the second category attempts to understand software evolution by using software 

trails. We also look at some tools that have been designed to support exploratory approaches.  

 

Using Historical Data to Study Software Evolution: Anton and Potts  [4, 5] advocate for the study of 
the functions offered by a system over its lifetime as a basis for understanding or predicting 

characteristics of the particular system or similar systems. In realising this idea they proposed an 

approach, called functional palaeontology, to studying the evolution of user-visible features 

independent of architecture and design intent. The approach is similar to other approaches that study 

evolution histories [8, 44, 49, 83, 119, 120]. Their approach was motivated by the observation that 

research in evolution focussed on code-based analysis. They applied the approach to the analysis of 

evolution in telecommunications features over a 50 year period.  

 

In relation to the entailment relation described in section 2, functional palaeontology studies software 

evolution in terms of requirements, in contrast to specifications and design. Functional palaeontology 

has two components: functional morphology and functional evolution. Functional Morphology refers 

to the profile or snapshot of the requirements of an application at a given time. Meanwhile functional 

evolution refers to the patterns of change in the requirements over time. Functional palaeontology was 

also applied to the study of feature evolution in a word processor [60].  

 

Based on Anton and Potts idea of functional palaeontology [4, 5], Girba and Ducasse [49] proposed 

Hlsmo – a metamodel in which functional evolution history is modelled as an explicit entity. Hlsmo 

was motivated by the lack of an explicit meta-model for software evolution analysis. Gall et al. [39], 

Rysselberghe and Demeyer [129], Wu et al. [149] proposed visualisation approaches for understanding 

software release histories. Although useful, their approaches analyse evolution at the source code level. 

Using source code analysis to understand evolution is necessary but not sufficient in understanding 

evolution at the requirements level.  

 

Using Software Trails to Study Evolution: While a majority of explanatory approaches use source 

code change history for understanding software evolution [51], there are other methods which have 

been proposed that use a different kind of data. German [44] proposed a method to recovering and 

analysing the evolution of a software system using software trails. Software trails refers to information 

behind by contributors to the development process of a software product such as software releases, 

documentation, version control logs, and websites.  
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German’s approach takes the software trails as input and reconstructs the evolution of an application.  

Fischer and Gall [35] proposed an approach to analysing feature evolution in software system. The 

main idea of their approach is to examine hidden dependencies between structurally unrelated features, 

which over time become coupled. The authors claim that such hidden feature dependencies must be 

identified as they may be a clear indication of architectural erosion. Architectural erosion refers to any 

detrimental deviation, with time, of a system’s architecture from its original design conception [114].  

 

Tool Support of Explanatory Approaches: A number of tools have been developed to support 

research in understanding how systems evolve [57]. Hassan and Holt [57] proposed using evolutionary 

code extractors as tools to help in empirical source code evolution research. Evolutionary code 

extractors are limited to understanding source code evolution – they cannot be used for understanding 

other software design artefacts such as specifications and designs. Scalability is also a major challenge 

in these tools as they have to be able to analyse large and complex code repositories. 

 

3.2 Management Approaches 
 

According to Zave [153] and Chung et al. [23] , from a software engineering perspective software 

evolution is a naturally occurring phenomena. It happens regardless of the actions of designers or 

requirements analysts and thus can only be managed rather than be controlled. Based on this notion, 

Zave distinguished research in managing software evolution in terms of prescriptions for evolving 

systems rather than for evolvable systems. There is an important distinction between evolving and 

evolvable systems. The term evolving system refers to the notion that evolution of software systems is 

a natural process [23, 24, 157]. One the other hand, the natural evolution of a software application may 

lead to side effects such as architectural erosion and increase in maintenance effort. A common 

approach to minimising such negative effects is to manage the evolution of a system by designing it in 

such a way that it is evolvable. We classify management approaches into the following categories: 

feature engineering and software architectures, continuous architectural evaluation, minimising and 

accommodating change, change impact analysis, incremental model transformation.  

 

Feature Engineering and Component Architectures: Zave’s prescriptions for making software 

systems evolvable are feature engineering and component architectures. Feature engineering involves 

describing all features as if they were independent, understanding all potential feature interaction, 

deciding on which interactions are desirable and which are not, and adjusting features and composition 

operators so that features interact only in desirable ways [125, 140, 141, 152]. Component architecture 

supports feature engineering by providing structural bases on which new functions can be added freely 

by adding component programs [16, 17, 22, 26, 41, 66, 142].  

 

The main objective of both feature engineering and component architectures is encouraging modular 

software development. Modularisation seems to be a dominant concept to the management of software 

evolution and has appeared in different forms such as code clusters [7, 50], feature views [51], 

components [148] and modules [156]. Based on the observation that managing evolution in a large and 

complex software is challenging, Glorie et al. [50] proposed an approach for splitting a large software 

repository into smaller repositories. The assumption is that smaller software repositories ease future 

software evolution.  

 

In re-modularising a repository their approach identifies conceptual commonalities using formal 

concept analysis and clustering techniques. In validation experiments conducted by the authors, the 

approach failed as the results of a modularisation were not sensible to domain experts, owing to lack of 

domain knowledge input into the modularisation process. Although the approach worked for smaller 

code repositories, it failed to scale-up for larger and more complex source code repositories.  

 

Pena et al. [118] proposed a novel view to software evolution. They view an evolutionary system as 

being a software product line. The core architecture is the unchanging part of the system and each 

version of the system may be viewed as a product from the product line. Each product is then described 

as the core architecture with some additions. However, the assumption that core architecture remains 

the same in the entire life of an application may not always be true. 

 

Continuous Architectural Evaluation: Del Rosso [31] proposed continuous architectural evaluation as 

an approach to managing evolution. The approach is based on the premise that software development is 
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a process of continuous modelling and refinement. Over time the system architecture ages and weakens 

the system’s ability to incorporate new features.  

 

The objective of continuous architecture evaluation is to ensure that the architecture continues to 

satisfy its requirements. In principle, this approach is similar to Garcez et al. [29] approach of 

combining abductive reasoning and inductive learning to evolve requirements specifications. While 

Del Rosso’s approach focuses on architecture, Garcez et al.’s approach is more generic and hence 

applicable to the evolution of different aspects of software. 

 
Minimising and Accommodating Change: The inherent complexity of software systems increases 

their susceptibility to fragility due to change induced by unpredictable variations in user needs and 

technology advances. In addressing this problem Ravichandar et al. [123] proposed a capabilities-based 

approach to constructing complex software systems in such a way that they are tolerant to change. 

Capabilities are change-tolerant functional abstractions that are foundational to the composition of 

system functionality derived from user needs [122]. Capabilities are based on the notion that the basic 

human need for a software system remains the same even though its solution may progressively 

become more and more refined over time as novel technologies become available.  

 

For example, consider the basic problem of enabling people living in different parts of the world to 

communication. In ancient time, the initial solution to the problem was to use smoke signalling as a 

way of relaying information or sending messengers. Then came fixed line telephony and with the 

introduction of cellular phones came the now popular Short Message Service (SMS). Nowadays 

instead of sending a messenger, we send an email or SMS. In essence capabilities capture the basic 

problem to be solved by a software system.   

 

Their idea of capabilities is similar to that of goals that are more tolerant to change compared to low-

level requirements.  Both approaches are meant to minimize and accommodate change. However, there 

some differences though. Goal-oriented approaches are top-down as goals are decomposed and refined 

into requirements that can be implemented [143, 144]. On the other hand, Ravichandar et al’s  

capabilities-based approach [122, 123] is bottom-up as capabilities are derived from requirements. 

Hence a capabilities-based approach may be used to infer goals from requirements in a similar manner 

as Van Lamsweed and Willemet’s approach to inferring declarative requirements from operational 

scenarios [145].   

 

Change Impact Analysis: Analysing and understanding the impact of change is one of the problems at 

the forefront of software evolution research [97, 137]. Soffer’s [137] scope analysis approach 

determines the extent to which changes to one business process affects other business processes. 

Understand the effects of changes at the level of business processes is useful as such changes are 

mirrored by evolution of the software systems that support the business processes.  

 

Although Soffer’s approach gives requirements analysts an idea of the scope of change, it does not 

offer a practical method of tracking the impact of changes to the software systems that support the 

business process. In addressing the change tracking problem Lin et al. [97] proposed capturing 

requirements changes as a series of atomic changes in specifications and using algorithms to relate 

changes in requirements to corresponding changes in specifications. A combination of the two 

approaches has the potential to lead to an approach both for understanding the scope of changes and a 

way of tracking them as a system evolve. Change impact analysis is a critical component of 

understanding and managing software evolution. This is evident in the research activities addressing 

this problem [1, 15, 58, 124].   

 

Incremental Model Transformation: Automated model transformation plays an important role in 

model-driven system engineering in order to query, derive and manipulate large industrial models. For 

instance, meta-modeling-based development architectures (including MDA) highly rely on 

transformations within and between different models and languages. The contribution of model 

transformation (MT) languages and tools in the overall success of model-driven system development 

has been reported in many surveys and papers during the recent years [14, 27, 42]. Approaches to 

model transformation and various solutions addressing the encountered challenges are continuously 

being explored. 
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Tool integration based on model transformations is one of the most challenging tasks with high 

practical relevance. In tool integration, a complex relationship needs to be established and maintained 

between models conforming to different domains and tools. Similar problems arise in a wide range of 

circumstances; synchronization involving requirement and design models is an example. The aim of 

model synchronization is to keep a model of a source language and a model of a target language 

consistently synchronized while the underlying source model (and sometimes the target also) is 

evolving. Model synchronization is frequently captured by transformation rules [11]. When the 

transformation is executed, trace signatures are also generated to establish logical correspondence 

between source and target models.  

Traditionally, model transformation tools support the batch execution of transformation rules, which 

means that input is always processed “as a whole”, and output is always regenerated completely. 

However, in case of large, complex, and continuously evolving models, batch transformations may not 

be feasible. To address the issue of model evolution, incremental model transformation: (i) update 

existing target models based on changes in the source models [121], and (ii) minimize the parts of the 

source model that need to be reexamined by a transformation when the source model is changed [12]. 

In the terminology of [27], these aspects are called referred to as target and source incrementality, 

respectively. 

3.3 Summary of Approaches to Software Evolution Management 
 

The approaches discussed in this section focus on understanding and managing software evolution in 

long-lived systems. Tables 3.1 and 3.2 present summaries of the approaches we have reviewed to 

understanding and managing evolution, respectively. Worth noting is that a majority of these 

approaches seem to consider software evolution as change in source code. In table 3.2 the last column 

represents the level at which each evolution management approach manage evolutionary changes. This 

can be at the level of requirements (R), specifications (S), or contexts (W). 

   

Table 3.1. Summary of Approaches to Understanding Software Evolution 
Explanatory 
Approach 

Classification 

Type of Data Used Main Characteristics Examples Approaches 

Empirical Studies Meta 
Models 

Visualisation Source Code Change  

History 

Source Code Source code history is used to 

identify trends in system 

changes over time. Anton and Potts [4-

6] , Barry et al. [8], 

Smith et al. [136] 

Girba and 

Ducasse 

[49],  

Gall et al. [39], 

Bohner [15], Wu 

et al. [149] 

Software Trails software releases, 

system user manuals, 

version control logs, 

project websites, Emails. 

Uses artefacts generated in 

support of a software 

development project, such as 

emails, to understand source 

and history of changes. 

German [44], Kitchenham et al. [80], Kagdi et al. [76]. 

 

Table 3.2. Summary of Approaches to Managing Software Evolution 

Level at Which 
Change is Managed 

Management 
Approach 

Classification 

Main Characteristics Evolution Management 
Approaches 

R S W 

Zave [152, 153] √ √ √ 
Turner et al. [141]  √  

Feature Engineering  Modularity is used as means to promote ease of 

evolution and maintenance. 

Ricci [125].  √  
Bond et al. [16]  √  

Kang et al. [77] √ √  

Lee et al. [87]  √  

Oreizy et al. [115]  √  

Turner [142] √ √  

Component 

Architectures 

Propose that software architectures should be 

design such that they ease of addition and 

removal of software modules 

Zave et al. [154] √ √ √ 

Del Rosso [31]   √  Continuous 

Architectural 

Evaluation 

The ability of software architecture to satisfy 

requirements is continuously verified. 
Garcez et al. [29]. √ √  

Minimising & 

Accommodating 

Change 

Propose methods and techniques that reduce 

fragility of software designs as a system 

evolves. 

Ravichandar et al. [122, 123]   √  

Soffer [137], √  √ 
Lin et al. [97]  √  

Ahmad et al. [1] √ √  

Bohner [15]  √  

Hassine et al. [58] √ √  

Change Impact 

Analysis 

Analyse the impact that a change would have 

on a system design. 

Ren et al. [124].  √  
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While is true that changes to a software system are eventually implemented in source code, this limited 

view of software evolution does not explicitly consider the notion that changes reflected in code 

actually origination from requirements. Changes at the source code level are at a level too low to 

enable the understanding of how changes in goals of an organisation are reflected in the source code.  

 

Therefore considering software evolution only at the source code level is insufficient as it does not 

capture high-level changes such as changes in requirements. Studying evolution at the requirements 

level could be complementary to the source code level research as it can potentially allow for 

systematic traceability of how changes at the requirements level are propagated to source code. Most 

importantly, current approaches to software evolution do not take into account the impact of evolution 

of security concerns. Kagdi et al. [76] provides a more comprehensive survey and taxonomy of 

approaches for mining software repositories in the context of software evolution. In the next section we 

review approaches to security requirements engineering. 

 
4. Security Requirements Engineering 
 

Security is an important characteristic of software systems and it is increasingly considered as a 

fundamental part of the software development lifecycle. A first step towards this idea is the proposal 

by Mouratidis et al. [107, 109] that security engineering should be an integral part of software 

engineering. This is based on the notion that an ad hoc integration of security into a software system 

that has already been developed has a negative effect on its maintainability and security.  

 

In this section we review approaches to security requirements elicitation and analysis. We classify 

these approaches according to the constructs that they are founded on, namely: goals-based, model-

based, problem-based, and process-oriented approaches. Our classification is partly based on previous 

surveys by Tondel et al. [138], Villarroel et al [147], and Mouratidis and Giorgini [107] and partly by 

our own understanding of the literature in this area.    

 

4.1 Goal-Based Approaches 
 
Goal-oriented approaches to security engineering focus on identifying threats to satisfaction of goals as 

the basis for identifying system vulnerabilities. In comparison to low-level requirements, the high-level 

abstraction of goals implies that they are more stable than low-level requirements. This makes goals 

less likely to change compared to low-level requirements. However, a limitation resulting from this 

benefit is that goals may be insufficient for analysing low level security concerns. In this section we 

review four goal-based approaches:  KAOS [143], an extension of KAOS to reasoning about 

confidentiality requirements [30], Secure Tropos [48, 108, 110], and Secure i* [98].  

 
KAOS: van Lamsweede [143] proposed an approach to modelling, specifying, and analysing security 

requirements. The approach extends an earlier framework on eliciting goals and identifying potential 

obstacles to satisfying goals [144] to security engineering. This is achieved by addressing malicious 

obstacles which could be setup by attackers to sabotage the satisfaction of security goals.  

 

The security obstacles are called anti-goals and are similar to the idea misuse cases [134]. The anti-

goals are then refined and elaborated through attack trees until leaf nodes which represent software 

vulnerabilities are identified. In a comparative study reported in Opdahl and Sindre [113], attack trees 

were found to be more effective at identifying security threats than misuses cases. In order to protect a 

system for the identified potential threats that could take advantage of the vulnerabilities, new security 

requirements are then elicited whose implementation is a countermeasure to potential threats.  

  

Building on KAOS De Landtsheer and van Lamsweerde [86] proposed an approach to formally 

specifying and reasoning about confidentiality requirements in the early stages of software 

development. Confidentiality is one of key security requirements for information systems and it entails 

ensuring that information is accessible only to those authorised to access [67]. De Landtsheer and van 

Lamsweerde’s approach makes it possible for requirements analysts to check requirements models for 

violation of confidentiality properties. In the case that violation of confidentiality properties is detected, 

a temporal sequences of state transitions is given that explains how confidential information could be 

disclosed. 
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The approach requires an analyst to specify all necessary confidentiality requirements. However, it is 

not always feasible to exhaustively eliciting all confidentiality requirements. This could be tackled by 

incorporating the approach into some form of analysis-revision cycle, such as Garcez et al. [29], that 

would allow for the continuous evolution of confidentiality requirements. Although the approach offers 

promising results for elicitation and analysis of confidentiality requirements its focus on confidentiality 

of state variables is limiting. Confidentiality of agent behaviour and what information can be inferred 

from such behaviour is another important aspect that the approach needs to take into account as a 

complement to the confidentiality of state variables. In addressing this limitation that approach may 

need to incorporate approaches to reasoning about the behaviour of contexts [52, 64] and how that 

behaviour contributes to satisfying or violating confidentiality requirements.  

 

De Landtsheer and van Lamsweerde view of confidentiality is limited. Other works on elicitation and 

analysis of confidentiality requirements have proposed detailed classifications of confidentiality 

properties, albeit, in specific domains. For partitions of kernels in embedded software systems, 

Heitmeyer et al. [59] proposed at least four confidentiality properties: No-Exfiltration, No-Infiltration, 

Temporal Separation, and Separation of Control. The No-Exfiltration property states that data 

processing in a partition cannot influence data store outside that partition while the No-Infiltration 

property states that data processed in one partition is not influenced by data outside that partition.  

 

The Temporal Separation property ensures that no confidential data stored in a partition in one 

configuration of the partition can remain in any memory area of that same partition in a later 

configuration. This property is similar to De Landtsheer and van Lamsweerde [86] view of 

confidentiality which states that an agent knows some data if it is stored in its memory. The Separation 

of Control property states that data processing between partitions is exclusive, that is, when data 

processing is in progress in one partition, there should no data processing in other partitions.   For 

shared systems Jacob [67] proposed similar confidentiality properties, namely: non-interference, 

restriction of information flow, lack of strong flow, separability, and non-deducibility.   

 

Another issue worth exploring is whether the conceptual basis of De Landtsheer and van 

Lamsweerde’s approach can be extended for reasoning about other types of security requirements such 

as authenticity, availability, and non-repudiation at requirements engineering time.  

 
Secure Tropos: Tropos [48, 108, 110] is a software development methodology, tailored from the i* 

modelling framework, which describes the system and its organisational environment. Models in 

Tropos are based on three basic concepts: actor, intention (goal, plan, resource), and dependency. An 

actor is an entity that has intentions within a system or organisation to be served by the system. A goal 

represents and actor’s aim or purpose and a plan represents a means by which a goal maybe satisfied. A 

resource is a physical or informational entity that may be as used by the actions in a plan to satisfy a 

goal. When an actor depends on another to satisfy its goal, the two actors are said to have a dependency 

relationship. The Tropos software development process identifies four phases that to be followed in the 

development of software systems, namely: early requirements, late requirements, architectural design, 

and detailed design. Each successive phase refines the high-level description from the previous phase 

to a lower level towards implementation. The concepts and software development phases of Tropos 

have two limitations: (1) they fail to adequately capture security requirements and (2) they fail to 

provide concepts and processes for modelling trust relationships between actors. 

 

In addressing the above limitations, Secure Tropos extends Tropos with the ability to model security 

concerns throughout the identified software development phases. This is achieved by explicit 

modelling of security constraints, secure entities trust of permission, and delegation of permission.  A 

security constraint is a restriction related to maintaining security properties such as confidentiality and 

integrity. Security entities represent goals, tasks, or resources in an application. Secure trust of 

permission represents that a trust relation between two actors involves the introduction of a security 

constraint that must be satisfied for the trust relation to be considered valid. Similarly, secure 

delegation of permission involves the introduction of a security constraint that must be satisfied either 

for the delegating actor, or delegatee, or both for the delegation to be valid.  

 

Although Secure Tropos provides a systematic methodology for eliciting and analysing security 

requirements, it does not provide means for propagating changes between the different models. For 

example, if there is a change in a trust of permission model there is no systematic way of relaying such 
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changes to a delegation of permission model, security constraint model, or security entities model. A 

clear interaction relationship between the models would provide a systematic way of propagating 

changes between the different models and hence support maintaining security properties as 

requirements evolve. 

  

Secure i*: Liu et al. [98] proposed an approach to analysing security and privacy requirements based 

on the  agent-oriented requirements modelling language i*. The main assumption in this approach is 

that security issues in a software application are a manifestation the relationships between the system’s 

actors. Based on this assumption, the approach elicits and analyses security requirements through 

studying the relationships between system stakeholders, potential attackers, and agents acting either on 

behalf of attackers or stakeholders.  

 

The approach consists of techniques for analysing attackers, dependency vulnerability, 

countermeasures, and access control. Attacker analysis identifies potential attackers and their possible 

malicious intents while dependency vulnerability analysis elicits vulnerabilities of an application based 

on relationship among stakeholders. Countermeasure analysis identifies measures that may be taken to 

prevent potential attacks and vulnerabilities from being realised. Finally, access control analysis 

establishes links between security requirements models and security implementation models by using 

i* models to refine proposed solutions and generate system designs that meet the security requirements. 

Trujillo et al. [139] proposed an approach for eliciting and developing security requirements for secure 

data warehouses which adapts the i* framework so that it can be used under model driven architecture 

and process modelling approaches. 

 

The Secure i* approach is composed of useful abstractions of basic concepts of security such as 

identification of malicious actors and developing appropriate countermeasures. However, there are 

some limitations inherent in this approach. Firstly, while it is plausible that security issues manifested 

in a software application are a reflection of the dynamic behaviour of actors and their relationships in 

the social setting of an application, there is no guarantee that all potential classes of attackers can be 

identified. The implication of this is that the countermeasures taken are likely to be incomplete.  

 

Secondly, the identification of vulnerabilities through dependencies between stakeholders is not 

foolproof because not all system vulnerabilities are due to relationships between stakeholders. Some 

security vulnerabilities may result from the addition of new features which may comprise the integrity 

of an application by violating security requirements maintained by current features. As an illustration 

consider the following example of conflicts between features in an automobile: 

 
Consider a car which has an alarm system (security feature) and a crash protection system with 
air bags (safety feature). The alarm system enforces security of the car occupants and their 
valuables. When activated it ensures that the doors and windows are locked; and monitors the 
state of the doors; and reports any burglary activity by activating the siren. Meanwhile, the safety 
feature ensures that in case of a crash, there is minimal loss of life. It achieves this by unlocking 
all doors in the event that an impact occurs on the front bumper.  
 
Let us consider a scenario where these features could interact. Assume the car is stationery at a 
traffic intersection with all doors locked by the Security feature. If a thief hits the front bumper 
with a big hammer, the Safety feature will unlock the doors allowing the thief to gain entry into the 
car.  

 

This feature interaction may not be obvious to detect until a scenario such as the one above occurs and 

illustrates a situation in which an attacker takes advantage of the vulnerability resulting from evolution 

of an application by adding new functionality. A possible implication of this example could be that 

vulnerability analysis should not only consider relationships among actors but should also scenario-

based misuse cases that may violate security requirements. 

 

4.2 Model-Based Approaches 
 

Model-Based approaches are based on the notion that models help requirements analysts in 

understanding complex software problems and identifying potential solutions through abstraction [34]. 

For example, models have been successfully for abstracting source code into class diagrams in reverse 

engineering. Such abstractions make it easier to understand the behaviour of a software system and 

how it might be improved.  In this section we review two model-based approaches (UMLsec and 
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SecureUML) in security engineering. While there may be other model-based approaches aimed at 

addressing security concerns in the literature, our focus on these two is purely on a representational 

basis. 

  
UMLsec [70]: This approach is an extension of UML which allows an application developer to embed 

security-related functionality into a system design and perform security analysis on a model of the 

system the system to verify that it satisfies particular security requirements. Security requirements are 

expressed as constraints on the behaviour of the system and the system design may be specified either 

in a UML specification or annotated in source code. Automated theorem proving or model checking is 

used to establish whether security requirements hold in the design. If the design violates security 

requirements, a Prolog-based tool is used to generate a scenario (in the form of attack sequences) of 

how security requirements may be violated by the design and countermeasure are taken to remove the 

vulnerability. UMLsec has been validated through its application to systems in mobile communications 

[73], automotive [13], and banking [69].  

 

In essence, UMLsec assumes that requirements have already been elicited and there exists some system 

design to satisfy them. Its objective is to establish whether the system design satisfies security 

properties. The design is then progressively refined to ensure that it satisfies security requirements.  

However, reasoning about security requirements in model-based approaches relies on accuracy of 

system design models. The assumption that design models accurately capture system behaviour may 

not always hold and incompleteness in a model may leave vulnerabilities that are outside the scope of 

the model undetected.  

 

For example, if a UML model used in the verification, obtained by reverse engineering source code, is 

not a true representation of the behaviour of the source code then it is inevitable that the results of 

verifying the design may not be accurate. In the case that verification suggests that the design does not 

satisfy security requirements it may not be possible to tell whether this is due to inaccurate translation 

to the design or the original source code. Of course, this may be seen as a concern that is outside the 

scope of model-based security engineering, but there is a need to ensure that the verified models are an 

accurate representation of reality. Some approaches have been proposed to verifying UMLsec models 

with system behaviour. These include using run-time verification [75], static formal verification [71], 

model-based testing [74], and security policy enforcement [61].  

 

SecureUML: Lodderstedt et al. [99] present a modelling language, based on UML, called SecureUML. 

SecureUML is focused on modelling access control policies and how these (policies) can be integrated 

into a model-driven software development process. It uses role-based access control (RBAC) as a 

metamodel for specifying and enforcing security. Additionally, the language provides support for 

specifying authorisation constraints.  The combination of the graphical capability of UML, access 

control properties of RBAC, and authorisation constraints makes it possible to base access decision on 

dynamically changing data such as time.  
 

Similar to UMLsec, SecureUML focuses on the design phase of software development. For 

consistency, it is important to consider security using the same concepts and notations during the whole 

development process [108]. Unlike most approaches to security requirements analysis SecureUML 

does not offer any analysis of scenarios eliciting potential attacks. Its focus on authorisation constraints 

is insufficient as it does take into account potential vulnerabilities that could violate the constraints. 

Moreover, the approach does not provide for a systemic way of verifying the validity of the constraints.  

 

4.3 Problem-Oriented Approaches 
 
Problem oriented approaches [54, 55, 65], bring informal and formal aspects of software development 

together in a single theoretical framework for software engineering design – presenting development as 

the representation and step-wise transformation of software problems. This theoretical framework 

allows for: (1) the identification and clarification of system requirements; (2) the understanding and 

structuring of the problem world; (3) the structuring and specification of a machine that can ensure 

satisfaction of the requirements in the problem world; and (4) the construction of adequacy arguments, 

to convince both developers and other stakeholders that the system will provide what is needed. In this 

section we review three problem-oriented approaches, namely: security requirements and trust 

assumptions [52, 53], abuse frames [95, 96], and misuse cases [2, 3].  
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Security Requirements and Trust Assumptions: Haley et al. [52] proposed an approach to eliciting, 

specifying and analysing security requirements, which combines concepts from requirements 

engineering and securing engineering. From a requirements engineering perspective the approach uses 

the concept of functional goals which can be refined into functional requirements with relevant 

constraints. From a security engineering perspective, it takes the idea that security is about protecting 

assets from harm assets.  

 

The approach consists of four components. The first component provides systematic statements of roles 

and relationships of security goals, security requirements and their relationships with other system 

requirements. The second describes threats and their potential interaction with the system. The third 

component is a precise definition of security requirements based on the description of potential threats. 

Finally, the fourth is a set of arguments which assists with validating whether the elicited security 

requirements can be enforced, given the context of the system. The construction of satisfaction 

arguments involves describing the system and its context in a problem diagram using Jackson’s 

problem frames notation [64].  
 

Abuse Frames: Lin et al. [95, 96] proposed abuse frames, an approach to analysing security problems 

in order to determine security vulnerabilities. This approach is also based on Jackson’s problem frames 

approach to structuring and analysing software development problems [64]. While problem frames are 

aimed at analysing the requirements to be satisfied, in contrast, abuse frames are based on the notion of 

an anti-requirement. An anti-requirement is the requirement of a malicious user that can subvert an 

existing requirement (similar to the concept of an anti-goal [143]).  

 

Abuse frames represent the notion of a security threat imposed by malicious users and a means for 

bounding the scope of security problems in order to analyse security threats and derive security 

requirements. Binding the scope of a security problem makes it possible to describe it more explicitly 

and precisely. Such explicit and precise descriptions facilitate the identification and analysis of threats, 

which in turn drive the elicitation and elaboration of security requirements. 

 

Misuse Cases: Use cases document functional requirements of a system by exploring the scenarios in 

which the system may be used [68]. Their focus on what the system should do limits their capability in 

documenting security requirements, which often concentrate on what the system should not do [133]. 

Similar to abuse frames, misuse cases are a negative form of use cases and thus are use cases from the 

point of view of an actor hostile to the system [2, 3].  They are used for documenting and analysing 

scenarios in which a system may be attacked. Once the attack scenarios are identified, countermeasures 

are then taken to remove the possibility of a successful attack. 

 

Although misuses cases are not entirely problem-oriented as they represent aspect of both problems 

and solutions, they have become popular as a means of representing security concerns in the early 

stages of software development. However, they are limited by the fact that they are based only on 

scenarios. Completeness of requirements analysed through scenarios is not guaranteed as other 

scenarios by which the security of a system could be exploited may be left out. 

 

4.4 Process-Oriented Approaches 
 

Process-oriented approaches focus on the steps for analysing security requirements. The steps may 

involve risk analysis for identifying security vulnerabilities and exploration of countermeasures for 

addressing identified weaknesses. In this section we review two process-oriented approaches: the 

SQUARE methodology and an aspect-oriented approach. 

 

SQUARE [103]: The Security Quality Requirement Engineering (SQUARE) method is used for 

eliciting, analysing, categorising, prioritising, and documenting  security requirements for software 

systems. The motivation of this method is to enable requirements analysts to identify security 

requirements as part of the requirements engineering process rather than as an after thought. The major 

stages of the method involve identifying security goals, performing risk analysis to identify potential 

threat to security goals, and eliciting security requirements which should be satisfied in order for 

security goals to be met. 

 

The definition of security requirements in the SQUARE methodology considers requirements as being 

at the system or software level. This definition does not consider the properties and behaviour of the 



 15 

context in which an application operates. According to Jackson [64], a more concise definition of 

requirements should consider their context of operation as satisfaction of a requirement is expressed in 

terms of the state changes in the context. The steps provide by the methodology are “waterfall model” 

in nature, and this does not make a provision for iterations to revise security requirements and support 

the evolution of a system. Nevertheless, the methodology provides concrete systematic steps for 

eliciting and analysing security requirement risk-based approach.  

 

Aspect-Orientation: In Georg et al. [40] an aspect-oriented approach to designing secure applications 

is proposed. The main idea of the approach is modelling security mechanisms and attack models as 

aspects and consists of four steps: risk analysis, misuse model generation, composed system misuse 

model generation, and alternative solution analysis. Risk analysis involves analysing a system to 

identify potential threats to assets and the threats are modelled as attack aspects.  Misuse model 

generation composes attack aspect with the base model of the application to create potential misuse 

models.  Composed system misuse model generation analyses the misuse models to evaluate the impact 

of an attack. If the result of the evaluation is such that the impact of a potential attack is severe and 

cannot be tolerated, then countermeasures are identified through alternative solution analysis.    

 

There are several benefits claimed for this approach. First, it allows designers to analyse and 

understand security mechanism and attack model in separately and in a modular form, thus making it 

easier to maintain the models. Second, using aspect composition and analysis techniques, designers can 

determine the effect of security mechanisms and attacks on other system functionality. Finally, 

determining the effects of new security mechanisms and potential attacks becomes a question of 

composing them with the existing application re-doing the aspect analysis. A similar approach is 

described in Xu et al. [150]. 

 

4.5 Summary of Approaches to Security Engineering 
 

We have reviewed the state of the art of approaches to security requirements engineering. The 

approaches have been classified into goal-based, model-based, aspect-oriented, problem-based, and 

agent-oriented. Table 4 presents a comparative summary of these approaches and brief summaries of 

their main characteristics. 

 

In Table 4, the conceptual classification column represents categories of security requirements 

engineering approaches based on the conceptual or primary characteristics for each security 

engineering approach. In this paper we have identified four categories, namely: goal-based, model-

based, problem-oriented, and process-based approaches. Each conceptual class has instances or 

example approaches that fall in that category. These instances are listed in the security approach 

column. 

 
Table 4. Comparative Summary of Security Requirements Engineering 

Security Analysis Conceptual 
Classification 

Security 
Approach 

Core 
Representation 

 

Security 
Specific 

Representation 
 

Vulnerability 
Identification 
Technique 

Counter measure 

KAOS[143

] 

Goals Anti-goals Identification of Attacker 

Goals. 

Elicitation of security 

goals to counter anti-

goals. 

De 

Landtsheer 

and van 

Lamsweed 

[30] 

 

Goals Unauthorised 

Agent, Attacker 

Knowledge, and 

Confidentiality 

Requirements 

Patterns.  

Requirements models are 

checked for violation of 

confidentiality properties. 

Elicitation of security 

requirements to 

minimise the violation 

of confidentiality 

properties. 

Secure 

Tropos 

TROPOS (Task, 

Actor, Resource, 

Goal, Soft Goal, 

Dependency) 

Security 

constraint, secure 

entities, secure 

trust, and secure 

delegation 

modelling 

Identification of malicious 

actor’s goals and plans, and 

analysis of each actor’s 

security constraints. 

Revision of actor 

diagram to ensure that  

secure entities are 

protected from 

malicious actors 

Goal-Based 

Secure i* Actor, goal, soft 

goal,  task, 

resource, and 

belief. 

Potential attacker,  

dependency 

vulnerability, and 

trust modelling,  

Attacker analysis 

(identification of potential 

system abusers and their 

intents) and Dependency 

Vulnerability Analysis ( 

identification of vulnerable 

points in actor dependency 

network) 

i* models are used to 

refine proposed solution 

and generate system 

designs.  
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UMLsec 

[72] 

UML Stereotypes Theorem Proving, Model 

Checking. 

System designs are 

revised to remove 

vulnerability. 

UML Model-
Based 
Aspect-Oriented 

SecureUM

L [99]   

 

UML and RBAC 

 

Security 

Constraints 

 

Modelling access control 

policies.  

 

Identification of 

authorisation constraints 

 

Haley et al. 

[52] 

Problem Frames Trust assumption, 

assets domain, 

threat domain, 

warrants, grounds, 

satisfaction 

argument, and 

rebuttal. 

Elicitation of security goals 

(based on possible harm to 

assets), refinement of security 

goals to security requirements, 

and construction of satisfaction 

arguments. 

Removing rebuttal by 

adding functionality to 

permit the addition of 

new grounds or warrants 

to mitigate the 

conditions that permit a 

rebuttal. 

Abuse 

Frames [95] 

Problem Frames Anti-

Requirements, 

Malicious User, 

Asset Under 

Attack, Security 

Requirement, 

Protected Domain 

Problem frames are used as a 

means of  security threat 

analysis and identifying anti-

requirements. Security threats 

are then expressed as abuse 

frames.  

Identification of abuse 

frame concerns which 

need to be addressed for 

an attack to succeed. 

Security requirement for 

counteracting threats are 

expression a problem 

frame.  

Problem-Based 
 

Misuse 

Cases [3] 

Use Case Misuse Case   

SQUARE 

[103] 

Goals and Risk Misuse Cases,  

Attack Scenarios, 

Attack Trees. 

Risk assessment to misuse 

case, attack scenarios, attack 

scenarios, attack trees. 

Elicitation of security 

requirements from 

potential risks. 

Process-
Oriented  

Georg et al. 

[40] 

Aspects and Risk Secure aspect Misuse Model Generation Alternative Solution 

Analysis 

 
The core representation column shows the basic notation that each security engineering approach uses 

for expressing its basic concepts. For example the basic construct in goal-oriented approaches is the 

goal notation. Security requirements have special characteristics which often make it necessary to 

extend generic core representations with security specific notations that are tailored for capturing and 

representing security concerns.  

 

For each approach security-related concepts are presented in the security representation column. In 

general approaches to security requirements engineering involve two main phases in their processes, 

namely (1) identification of vulnerabilities of a system to security threats, their probability of 

occurrence, and impact and (2) designing mitigation strategies to remove the possibility of threats 

causing harm to assets. The security analysis column documents methods and techniques by which 

each approach identifies system vulnerabilities and identify or design counter measures to potential 

threats.  

 

The next section evaluates the extent to which approaches to security requirements engineering support 

software evolution. 

 

5. Support for Software Evolution in Security Requirements Engineering Approaches 
 
Security engineering and software evolution, although often conflicting, are intertwined in the sense 

that a change in one may affect the other. For example a violation of security goals may result in new 

security requirements as countermeasures which in turn lead to an evolution of system functionality. 

Likewise, the inevitable evolution of a system may lead to the addition of new functionality which 

violates security properties. 

 

In this section we make a comparative evaluation of the main characteristics of the security 

requirements engineering approaches we reviewed in section 4. Our evaluation is based on a 

comparison criterion that examines support for software evolution in security engineering approaches. 

In the introduction section, we suggested that one way for security approaches to address concerns of 

evolution in long-lived systems is to integrate software evolution management approaches in security 

engineering. How can this be achieved?  

 

In order to address the question above, we need to know what exactly is missing in security 

requirements engineering approaches that can be considered sufficient in order to address software 

evolution concerns. To systematically elicit the limitations of security engineering approaches we did 

an analytical comparative evaluation and we started by formulating a possible comparison criteria. The 

purpose of the criterion was to evaluate to what extent do current approaches to security requirements 

engineering support software evolution. In formulating the criterion we had to ask a more fundamental 

question: what would it mean for a security engineering approach to support software evolution?  
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Our discussion in section 2 centred on the notion that the core element of software evolution is change. 

Thus, supporting the evolution of a long-lived system mainly concerns tailoring its architecture and life 

cycle in such a way that it makes it easier to accommodate and manage changing requirements. Our 

evaluation criterion consists of four dimension of software evolution which we consider important for 

security engineering approaches. In section 5.1 we present these criteria and discuss the evaluation 

results in section 5.2.   

 

5.1 Evaluation Criteria 
 

We identified four dimensions for evaluating support of software evolution in security requirements 

engineering approaches. These are modularity, component architecture, change propagation, and 

change impact analysis. We briefly explain these below. 

 
Modularisation: This is one of the most fundamental software engineering design principle. The value 

of software design modularity mainly lies in the ability to accommodate potential changes. 

Modularization techniques, such as object-oriented design patterns, provide one way to make some part 

of a system change independently of all other parts. Modularity enforces separation of concerns and 

makes it possible to develop software components independently and assembly them later. Constructs 

such as features, classes, objects, components, and aspects are all means to modularisation. 

Encapsulation is a key factor in modularisation as it determines the ability of a system design to contain 

changes within a single module. For software evolution modularisation is important because, 

potentially, it makes it easier to change the functionality of a software system by making it possible to 

add or remove components. 

 
Component Architectures: Modularity alone is insufficient in supporting software evolution in long-

lived systems. It is necessary to have an infrastructure where the software modules can be added and 

removed with ease [117]. Component architectures provide such infrastructure by offering mechanisms 

for component interoperability and integration which make it possible to extend systems with third 

party components and hence provide support for evolution. 

  
Change Propagation: The feature driven development paradigm [116] organises the functionality of a 

software system in terms of features which may have dependencies between each other. One feature A 

is dependent on some other feature B if B provides some services that A requires for its correct 

operation. This dependency implies that changes in feature B may affect feature A. For example a 

method in a class in B is changed and that method is called by A, the method call in A has to change 

accordingly – otherwise we have an inconsistent dependency. In order to correct such inconsistencies, 

further changes have to be made until consistency is restored. A change propagation process keeps 

track of these changes and help in guaranteeing that a change is correctly propagated and that no 

inconsistent dependency is left unresolved.   

 
Change Impact Analysis: This is similar concept to change propagation. While the change 

propagation is concerned with recording assessing the ripple effect of changes, the objective of impact 

analysis is to determine what would be affected by a change to a particular artefact [15, 58]. This 

involves identifying the artefact to be changed and how other artefacts that depend on it (its dependent 

relationship). Identifying, dependent relationship is a recursive process as artefacts that depend on the 

selected artefact may also have their own dependents, and so on. The process of dependency 

relationships analysis continues until all dependencies are identified, starting with the selected artefact 

and finishing with artefacts where nothing else depends on it.  

 

5.2 Evaluation results 
 

Table 5 presents a comparative evaluation of the security requirements engineering approaches 

discussed in section 4 using the evaluation criterion above. The evaluation of each approach is based on 

analysing the characteristics of the core representation, security specific representation, vulnerability 

identification technique, and countermeasure techniques to accommodating change. The aim is 

establish the extent to which current approaches to security engineering support software evolution and 

whether some of their aspects hinder support for change.  

 



 18 

We evaluate each approach by assigning an integer value in the range 0 to 3. At the lower end, the 

value 0 implies that an approach offers little or no support for a particular aspect of software evolution.  

On the higher end of the scale, the value 3 implies that an approach fully supports the given aspect of 

evolution.    

 

Table 5. Evaluation of Support for Software Evolution in Security Requirements Engineering 
Approaches 
 

Security Evolution Support  
Conceptual 
Classification 

 
Security 
Approach Modularity Component 

Architectures 
Change 

Propagation  
Change Impact 

Analysis 

KAOS[143] 2: The 

decomposition of 

a system into 

goals supports 

modularity.  

0: There is no 

explicit support for 

component 

architectures. 

3: A goal model 

shows the 

relationship 

between goals and 

hence their 

dependencies. 

1: There is no explicit 

support for change impact 

analysis as the focuss is one 

identifying threats to 

existing goals (rather the 

effect of adding new goals) 

De Landtsheer 

and van 

Lamsweed [30] 

1: Goals are used 

as a construct for 

modularity 

0: There is no 

explicit consideration 

for component 

infrastructures. 

3: Dependencies 

between goals are 

modelled in a goal 

model.  

1: There is no explicit 

support. Focussed on 

identifying violation of 

confidentiality by existing 

goals. 

Secure Tropos 1: Although 

agents are used 

for identifying 

attackers, goals 

are the main unit 

of modularity. 

0: Component 

infrastructures are 

not explicitly 

supported. 

1: It is possible to 

analyse 

dependency 

relationships  

between agents. 

1: There is no explicit 

support for analysing the 

impact of adding new goals.  

Goal-Based 

Secure i* 1: same as for 

SecureTropos. 

0: There is no 

explicit support for 

component 

architectures. 

3: Achieved by 

modelling 

dependencies 

between 

stakeholders. 

1: Although there is support 

for analysing the security 

impact  of existing goals, 

there is no explicit support 

on how the impact of 

adding new goals is 

analysed.  

UMLsec [72] 2: Support is 

implicit as it is 

dependent on the 

OO nature of 

UML design 

models. 

2: This is implicit in 

UML, although the 

approach does not 

prescribe 

architectures. It 

verifies existing 

designs. 

2: Support is 

implicit as it is 

depended on the 

language used for 

the modelling 

language. 

3: Model-Checking and 

Theorem proving 

techniques are used to 

verify the impact of change. 

Model-Based 
 

SecureUML [99]   

 

2: There is 

implicit support 

from the 

component nature 

of UML.  

2: This provided by 

UML.  

 

2: Same as for 

UMLsec 

 

1: There is no explicit 

support, although new 

functionality can be verified 

against authorisation 

constraints.  

Haley et al. [52] 2: Modules are 

represented as 

problem 

descriptions. 

1: Focus is on 

eliciting security 

requirement rather 

how problem can be 

composed. 

1: There is no 

explicit modelling 

for dependencies 

between functions 

3: Argument satisfaction is 

used as a way of verifying 

that a specification satisfies 

a requirement in a given 

context.  

Abuse Frames  

[96] 

2: Modules are 

represented as 

problem 

descriptions. 

1: There is no 

explicit support for 

this. Depends on the 

structure of the 

system analysed. 

1: There is no 

explicit support 

for change 

propagation. 

2: Although there is explicit 

support, change impact 

analysis can be achieved 

problem analysis when new 

security problems are 

identified.   

Problem-
Oriented 
 

Misuse Cases [3] 2: Modules are 

use cases. 

1: There is no 

explicit support for 

component 

architectures.  

0: Focus is on 

identifying 

potential system 

abuses than 

interaction 

between functions  

2: This is implicit in the 

approach as it possible to 

identify misuse cases for 

corresponding to use cases. 

SQUARE [103] 0: There is no 

support for 

modularity. Focus 

is on risk analysis. 

0: The approach is 

focussed on steps for 

risk analysis 

independent of the 

underlying structure 

of the systems 

analysed. 

3: Risk analysis 

identifies 

dependencies, 

however, not 

necessary for 

change 

propagation. 

3: Although, the steps in the 

approach are ‘water model’ 

like rather than iterative, the 

approach can be used for 

impact analysis.  

Process-
Oriented 

Georg et al. [40] 2: The aspect is 

the construct for 

modularity. 

1: Aspect weaving 

techniques provide a 

way to compose 

aspects.  

3: Aspects 

encapsulate cross-

cutting concerns, 

hence show 

dependency 

between 

components. 

1: Focus is on 

encapsulating security 

concerns in aspects. There 

is no explicit support for 

change impact analysis. 
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We noted in table 3.2 that none of the approaches to managing software evolution we have reviewed 

consider security concerns. It is worth noting, in Table 5, that some approaches to security 

requirements engineering approaches discussed seems to provide some limited support for software 

evolution. More comprehensive support is necessary as software evolution is a survival characteristic 

for long-lived systems. 

 

As stated earlier, evolution often leads to violation of security requirements. Therefore there is need to 

investigate how software evolution could be a part of security requirements engineering and vice versa. 

In the next section we present a research agenda for security requirements for evolving systems. 

 

6. Security Requirements Engineering for Evolving Systems: A Research Agenda 

 
Based on our review of software evolution and security engineering, in this section we articulate open 

researches issues and present a research agenda in security requirements engineering for evolving 

systems. We frame the open research issues around challenges in both software evolution and security 

requirements engineering, and where possible, highlight some promising ideas on how the issues 

arising from the integration of evolution and security engineering may be addressed. Our discussion of 

the challenges is based on previous works Mens et al. [106] and  Mouratidis and Giorgini [107]. While 

these works focussed on software evolution and security engineering, respectively, the theme of our 

discussion is how to maintain satisfaction of security requirements while supporting continuous 

evolution of software systems. 

 
Understanding Change: As evolution in a software system is a manifestation of the changes in an 

organisation, there is a need to understand and capture evolution not only at the level of a software 

system but also at the organisational level. Current approaches to studying software evolution are 

focussed more evolution at the system-level rather instead of organisation level.  

 

There are several benefits to understanding change at organisation level. The most important is that 

organisations often state their needs in terms of visions and goals. In contrast to low-level requirements 

visions and goals are more stable in the face of change. Due to such stability is it therefore important 

that long-lived systems evolution should be understood in terms visions and goals instead low-level 

requirements evolution. An understanding of change could also lead to a theory of software evolution 

which could explain whether systems evolve functionally in non-random and partly predictable ways. 

Such theory could also make it feasible to integrate change as part of the software lifecycle. Support for 

model evolution [106] is one of the key challenges in software evolution that could also benefit from a 

high-level understanding of change. 

 

Brier et al.’s [19] approach to capturing, analysing, and understanding how software systems adapt to 

changing requirements in their organisational context. Although their approach is aimed at re-aligning 

software systems to business goals and processes; it can be seen as a step towards understanding 

change at organisation level. The approach includes a process of change analysis for evaluating 

improvements resulting from change in an organisation and a notation for reasoning about change.    

  

Designing Change Tolerant Software Systems: Changing user needs induce new requirements and 

technological advances may require a change in the context of an application. Evolution of an 

application is inevitable and software systems often break due to changes resulting from evolution. 

There is need for an approach to designing software systems in such a way that they can tolerate 

change, that is, they are evolvable and their evolution does not lead to failure. 

 

Promising approaches to designing change tolerant systems include: Ravichandar et al.’s [123] 

capabilities-based approach to designing change tolerant systems; Zave’s [153] feature-based and 

component-centric architecture approach to evolving software systems; Zowghi [157] approach to 

modelling and reasoning about requirements evolution; and Garcez et al. [29] to evolving 

specifications.  Another promising approach is described in Shin and Gomaa [132]. The approach 

models the evolution of non-secure applications into secure applications in terms of the software 

requirements model and software architecture model. Security requirements are captured separately 

from functional requirements and it is claimed that this separation makes possible to achieve the 

evolution from a non-secure application to a secure application with less impact on the application. 
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Non-Monotonicity of Software Evolution: Achieving systems that are secure and evolvable is a hard 

goal because software evolution and security are conflicting goals [111]. One of the key characteristics 

of software evolution is that in response to new requirements, new features may be added to legacy 

systems. This mandates composition of the existing feature set with new features. However, feature 

composition is non-monotonic [146] due to the feature interactions problem [78]. A system is said to be 

Non-monotonic if it does not guarantee that properties that held prior to addition of new functionality 

will continue to hold after the functionality has been added [56].  
 

Since software evolution involves the composition of existing features with new features, and feature 

composition is non-monotonic, then software evolution is intrinsically a non-monotonic activity. 

Therefore, one of the important challenges for security engineering for evolving systems is how to 

balance between the inevitable need for supporting continuous software evolution and the goal of 

designing systems which ensure that security requirements that held initially (and need to continue 

holding) are not violated by the addition of new functionality. This challenge can be summarised as 

follows: can continuous software evolution co-exist with stringent security requirements and how can 

this be achieved through sound design principles, methods, languages, and tools? How can 

vulnerabilities resulting from the addition of new features be minimized? 

 

Garcez et al [29] approach of analysis and change (as described in section 2.4) holds some promise as it 

makes it possible for systems to be evolved in such a manner that allows the satisfaction of desirable 

requirements to be checked at the end of an evolution cycle. At its present state, this approach allows 

for the violation of security properties and then evolving the specification to remove the violation. This 

is not a desirable characteristic especially in cases where the effects of the violation of a security 

requirement can not be reversed. An interesting challenge is how this approach (other similar 

approaches) could be modified such that evolutionary changes are only permitted only if the 

implication of any resulting violation to security requirements is minimal. This may involve taking into 

account the physical context of operation. This could be achieved by combining a analysis and revision 

approaches with problem-oriented approaches security requirements engineering (such as those 

proposed by Haley et al. [52]  and Salifu et al. [130]), and incorporating promising results from secure 

software composition [9, 10, 37, 38, 101, 102]. 
 

Security for Evolving Context-Aware Software: Context-aware applications have to maintain 

satisfaction of requirements despite changes in their operating conditions [130]. Designing context-

aware systems involves analysing possible variations in their context of operation and specifying 

behaviours in advance that would enable the system to maintain satisfaction of its requirements despite 

changes in context. Besides the repository of behaviours corresponding to different context, context-

aware systems are also equipped with mechanisms for monitoring their context and switch between 

behaviours in response to contextual changes. Evolutionary changes in a context-ware application are 

often driven by the introduction of a new context of operation that had not been considered initially. 

This makes it necessary to specify new behaviours to enable the application to continue to operate in 

the new context and a specification of variables to be monitored in the new context.  

 

Research in context-ware systems is relatively new. As a result current approaches to managing 

software evolution are focussed on systems that do not need to change their behaviour with changes in 

context. We envisage that the adaptive and dynamic nature of context-ware applications brings to fore 

additional concerns and challenges for both software evolution and security engineering. In software 

evolution one of the important research issues is whether the approaches proposed for managing 

evolution in none context-ware systems can be applied to context aware systems. There are at least two 

perspectives from which software evolution in an adaptive environment can studied. One concern 

involves evolution of system behaviour with changing context. The other relates to evolution in terms 

of new behaviour introduced to an application due to new context that was not considered initially. It is 

worth investigating the interaction between these perspectives of evolution and the security concerns 

they may raise.  

 

An even harder challenge of security and evolution in context-aware systems is online software 

evolution [148], which is a kind of software evolution that updates running programs without 

interruption of their execution. Evolution for such systems is dynamic and often has to be completed in 

relatively short time limits. This timing constraint raises at least two concerns.  (1) How can the 

correctness of evolved software be verified? Current approaches to verification are based on model 

checking and theorem proofing [21, 33, 47, 93]. Both of these verification techniques are resource 
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intensive operations and often take long to complete. (2) If the event that the online evolution fails, can 

the evolution be rolled back? What are the implications of such roll back on security properties?  

 

7. Conclusion 
 

Software systems evolve in response to changes in their operating environment and requirements. Such 

evolution often violates security requirements. We have reviewed the state-of-the-art in security 

engineering and concluded that current approaches to security engineering do not address the problem 

of preserving security properties that may be violated as a result of software evolution.  

 

This paper suggested that one approach to addressing this problem of preserving security properties is 

to integrate approaches to managing software evolution in security engineering. We termed this as 

security requirements engineering for evolving systems. We have identified and discussed open 

research issues and challenges that may need to be addressed in order to achieve the goal of security 

engineering for evolving software systems. In some cases we have discussed promising research 

directions on how the identified open issues could be addressed. 
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Abstract. Access control is a key component of system security. Due to
the high dynamicity that characterize the new software systems, access
control models must be able to evolve with the systems they protect to
maintain an adequate level of security. This survey discusses what does it
mean evolution in access control and provides an overview of the access
control models that are able to support evolution.

1 Introduction

Access control is a key component in any security solution, in that it deter-
mines which subject can perform which action under which circumstances on
the protected resources.

A variety of access control models and policy languages have been devel-
oped over the years. They can be classified according to three main access con-
trol paradigms: Discretionary Access Control (DAC), Mandatory Access Control
(MAC), and Role Based Access Control (RBAC).

In the early days of the mainframe, when the biggest need was to prevent one
user from interfering with the work of others sharing the machine, MAC models
were widely adopted. Permissions to use a system resource, such as a file, was
linked to the users identity. Permissions were stored in an access matrix, that can
be modified only by a trusted party, the system administrator. As the number
of users grew, the burden on the administrator became untenable. Thus, DAC
models have emerged as a more suitable access control mechanisms. In DAC
models each object has an owner who exercises primary control over the object.
While DAC performed well for centralized monolithic systems, it turned not to
be suitable for distributed systems because of the complexity of managing the
access rights for individuals and machines. Role-based access control (RBAC)
proposed to reduce such administrative costs. In RBAC permissions are assigned
to roles, that identify a category of users, rather then to single users. The idea
is that there will be far fewer roles than either users or permissions.

Such systems where designed with an essentially static idea in mind: the users
and the resources change slowly and the management of changes is essentially a
problem of administration. Indeed, the classical Bell-LaPadula model for multi-
level security introduced the “tranquility principle” as a key property for security
theorems to hold [6].

Unfortunately, new software systems are undergoing continuing change and
rapid revolution to respond to the changes in the environment, user needs, de-
veloping concepts and advancing technologies [17].



So, the evolution of software systems requires access control systems that
include evolution as a first class citizen in order to preserve the security of such
systems.

With the exception of the early papers on the access control matric by Har-
rison, Ruzzo and Ullmann [11] (and the first works by Sandhu [22, 23]), the
problem of evolution of access control systems has received little attention by
the research community because was considered just a problem of administra-
tion. This survey provides an overview of how access control models deal with
evolution.

The survey is structured as follows. In the next section, we discuss what
evolution means in access control systems and which are the main causes of
evolution. Section 3 overviews the proposals that supports the representation
of change and policies change impact analysis. Section 4 presents access control
models that consider environmental factors in making access control decisions.
Section 5 discusses the only work about resiliency of an access control model.
Moreover, Section 6 concludes the survey and outlines some possible research
directions.

2 The Notion of Evolution in Access Control

The evolution of an access control model consists of changing the access control
policies and the constraints on the existing model. The possible type of changes
that can occur in an access control model consists of adding or removing a sub-
ject, adding or removing a resource to be protected, and in adding, revoking or
modifying access rights granted to subjects. These changes can be triggered by
several factors. Access control policies may change because of changes in the en-

vironment in which the access control model is deployed. For example, when the
system is attacked, or when a vulnerability is detected, the access rights granted
to users need to be changed to prevent malicious users or software applications
from accessing vulnerable resources, or vice-versa. When new regulations or laws
concerning security and privacy are introduced, access control policies must be
updated to comply with new regulations and laws. The access control policies
that regulate the access to a resource may also change with environmental factors
such as time or the location in which users make an access request. Changes of

the system requirements may also cause the modification of access control poli-
cies. Indeed, system requirements and access control policies are strictly related.
Requirements capture the functionalities of a system while access control policies
control end-users interactions with system resources that are usually described
by functional requirements.

Changes to the system design and implementation such as the addition of a
software component, or of a new resource, the installation or the update of new
application requires the specification of new access control policies to restrict
access to the new resources.

Thus, it is important that an access control model is able to evolve in response
to the variety of changes that can occur and undermine the security of a system.



An access control model should support the representation of the events that
cause the evolution of the model and the analysis of the impact of the change in
terms of the results of the evaluation of access requests with the respect to the
policies and of the authorization state that lead to a specific evaluation result.

Though evolution of access control models is inevitable to preserve systems’
security, how to manage the evolution of an access control model is still an
open problem. The proposals about access control models and evolution can be
classified in proposals that:

1. support the representation of change
2. support change impact analysis
3. evaluate the impact of changes in the environment on the applicability of

access control policies
4. analyze the resiliency of access control models to changes.

In the next sections, we present the main proposals about evolution of access
control models based on the above classification.

3 Evolution as Change in Policies

Analyzing what have caused a change in the access control policies of a system
and how this change affects the set of actions that are permitted or denied is
really important. In fact, changes in the policies may result in a decreased level
of protection.

Margrave [14] is a software suite for analyzing the impact of changes to role-
based access-control policies expressed in XACML [19]. Margrave includes a
verifier that analyzes policies written in the XACML language, translating them
into MTBDDs (multi-terminal binary decision diagrams). The vertexes of the
diagram model variables that represent the components subjects, actions, and
resources of an XACML policy. Each combination of boolean values over these
variables maps to one of three policy results (permit, deny, or not-applicable)
supported by XACML; the results are denoted by the terminals of the MTBDD.
To implement change analysis, Margrave introduces a different type of MTBDD
called change-analysis decision diagram or CMTBDD. A CMTBDD has sixteen
terminals, one for each ordered pair of results from the policies being compared
(such as permit-to-permit, deny-to-ec, permit-to-not-applicable, and so on). The
CMTBDD is generated from the MTBDDs of the two polices need to be com-
posed showing the changes of the two policies. Margrave provides a suite of oper-
ators for creating an manipulating a CMTBDD, such as restricting a CMTBDD
to a particular kind of change and determining which variable values can lead
to particular kinds of changes.

Pucella and Weissman [21] introduce a modal logic-based on propositional
dynamic logic to reason about the execution of scenarios during which the set
of access control policies change. The semantic of the logic is based on Kripke
structures, which are the formal models of the applications. Intuitively, a Kripke
structure encodes a transition system, along with the characteristics of each state



(i.e., which primitive propositions are true in each state). Transitions represent
the actions that can be permitted or denied. To analyze the consequences of
changing an access control policy, the authors model the properties that the
change should satisfy as a formula, and verifies that the formula is true with
respect to the Kripke structure capturing the states of the application and the
possible transitions, and the new set of access control policies.

Koch, Mancini, and Parisi-Persicce study the change impact problem [15].
They use graph transformations to represent the evolution, the integration, and
the transformation of security policies. A policy is formalized by four compo-
nents: a type graph, positive and negative constraints (a declarative way of de-
scribing what is wanted and what is forbidden) and a set of rules (an operational
way of describing what can be constructed). The specification formalism, is based
on the different possible semantics of graph transformation systems, described
in terms of category theory and well understood gluing constructions. They dis-
cuss how to preserve the coherence of a policy during its evolution. They assume
that the change over time of a policy is due to the addition/deletion of rules and
constraints. Although they present examples of how to represent changes using
graphs, they present no algorithms or tools, nor suggest methods for eliciting
policy change from graph differences.

Chaudhuri et al. [7] propose EON, a logic-programming language to model
and automatically analyze dynamic access control systems. The authors focus on
access control systems in which processes and objects are labeled with security
levels, and processes are prevented to access objects based on their labels. The
changes that the author consider and of which they analyze the impact are
the creation of new objects and processes, and the modification of objects and
security labels. Thus, EON language extends Datalog with dynamic operators for
creating and modifying simple objects and processes. The operational semantic
of an EON program, that is, a collection of clauses, is given as a (possible non
deterministic) transition system over a database, that is a collection of facts.
The analysis of the access control system is done evaluating a query on an EON
program and checking that the system does not reach an undesirable state.

Naldurg and Campbell [20] present an approach to dynamically changing
access rights in response to an attack to the system or when a vulnerability is
detected so that the safety property and trust assumptions are preserved. The
approach is based on representing the possible changes as a state machine with
the sets of subjects, objects and access rights as its state variables, and the tran-
sitions are all system actions that can change the state variables. State-changing
transitions may include the addition or removal of a subject, an object, or an
access right. To preserve the safety property and trust assumptions, transitions
are associated with guards that force users to present a proof of authorization,
in the form of credentials, attesting that they have the right to change the access
rights.

Barker et al. [1] present SBAC, a novel access control model based on the
notion of status. The key aspect of the SBAC model is the capability of au-
tonomously changing access control policies in response to events that involve



users actions. The assignment of users and access privileges on objects may
change dynamically as a consequence of the occurrence of events of relevance in
an environment being modeled or because of situational factors, such as the time
at which access to a resource is requested, the location of the agent requesting
access, CPU or network load measures, system status criteria (e.g., system under
attack), sales volumes, and trading patterns. These events are used, in conjunc-
tion with users action status, to determine a users status level and hence the
users authorizations. A users action status; this history enables changing access
policy requirements to be naturally accommodated. SBAC access control policies
and the history of events related to a user are represented as Identification-based
Logic Programs (IBLPs), that are an annotated form of logic programs. The ap-
proach is implemented as an autonomous agent that reasons about the events,
actions, and a history (of events and actions), which relates to a requester for
access to resources, in order to decide whether the requester is permitted the
access to a resource.

4 Evolution as Change in the Environment

The importance of taking environmental factors into account when making access
control decision has been recently outlined in several proposals [10, 9, 13, 2, 12,
24, 25, 8, 5, 26, 16, 4, 3]. Environmental factors such as time and location are
often denoted as context in these proposals. Considering environmental factors
allows to make access control policies enforcement dynamic. Changes in the
environment influence the applicability of access control policies, and trigger the
dynamic change of the policies.

Dougherty et al. [10] define a framework to represent access control policies,
their dynamic environment and the interactions between them. A policy inter-
acts with its dynamic environment by consulting facts in the environment and
potentially constraining certain actions in the environment. The interaction be-
tween a policy and its environment is modeled by a state machine. States are
labeled with a set environmental facts and the result of the evaluation of the
policy in that state, while transitions are labeled with events corresponding to
actions performed by users (such as access requests) and events occurring in the
environment. Such model is used to analyze the impact of the environment on
the evaluation of an access request against an access control policy.

Craven et al. [9] present an expressive logical framework for policy specifica-
tion and analysis. The framework separates the representation of policies from
the representation of the system that is protected by the policies. Policies are
represented as first-order logic rules while to model the system Event Calculus
is adopted. EC has been chosen because of its ability to represent concisely the
effect of actions on properties of the system. EC includes predicates to repre-
sent dynamic features of the system, system events not regulated by policies,
system events regulated by policies and time instants. The analysis is based on
the use of abductive, constraint logic programming (ACLP) systems, and the
Event Calculus (EC) to describe how events and actions occurring in the system



affect the system states, leading to circumstances in which a given policy rule is
applicable. The analysis returns a system trace, that is sequence of actions, that
have caused a change in system properties.

Jagadeesan et al. [13] propose a policy algebra for dynamic policies that is
a sub-language of Time Default Concurrent Constraint programming. The pro-
grams in their policy algebra are reactive, meaning that a program may interact
with its environment in a sequence of discrete time steps. With this algebra
it is possible to represent state changes triggered by environmental changes or
users access requests. State changes are modeled using labeled transition sys-
tems. Each state of the LTS is captured by a Datalog constraint program. An
LTL formula is interpreted over traces (sequences of states) where in each state
of the trace, a truth value is associated with each of the atoms appearing in the
formula. LTL has temporal operators in addition to the usual logical connectives
of propositional logic so that one can describe relationships between the values
of the atoms across time.

Becker et al. [2] propose SMP, a logic for specifying access control policies
whose evaluation causes a change in the authorization state. This logic is based
on Datalog, but extends it with predicates for state modification, called effects,
and a simple form of negation. The semantics of SMP is formalized by modeling it
as a fragment of Transaction Logic that is a general framework that incorporates
database updates and transactions into first order logic. An authorization state
is defined by a database which contains environmental facts that are relevant for
authorization, such as the actions a user performs or the role played by a user.
Facts may be inserted or removed from the database as the result of evaluating an
access request. The authors present an inference system for evaluating sequences
of user actions with respect to policies and check that the authorization state
reached satisfies certain constraints. Thus, they do not consider changes to the
policies but only changes in the environmental facts.

Hulsebosch et al. [12] propose a context-based access control model where
the access to a resource is granted or denied to a user based on context in-
formation. The introduction of the context allows to adapt security policies to
situational or contextual changes. They propose a system architecture to take
authorization decision based on context that consists of context owners (COs),
context brokers (CBs), context providers (CP), context-aware service providers
(CASPs), and access controllers (ACs). The COs collect and own the contextual
data or information, e.g. a user receives and possesses GPS-location information.
He or she decides how and by whom context data or information may be stored,
distributed and processed. The CPs check that context access control and usage
policies are in line with privacy and security requirements of the COs. The CPs
also take care of context management issues by providing categorization means
for context indexing, retrieval, querying, inferential and association purposes.
CBs provide service publishing mechanisms to CPs, and service discovery mech-
anisms to the CASPs. The CASPs provide services to users that are adapted to
specific user-service contexts, e.g. being on the train. The AC grants or denies
users to perform an operation on an object according to an access control policy.



First, the AC authenticates a user by verifying the contextual attributes pro-
vided by the user. Then, the AC binds the user with a set of permissions based
on those attributes.

Toahchoodee et al. [24] present Spatio-Temporal RBAC (STRBAC), which
extends traditional RBAC models with spatial and temporal constraints. In
STRBAC, users assignment to roles and permissions assignment to roles is based
on the location of a user and on a time interval. Also, the enforcement of sepa-
ration of duty constraints depends on location and time. Thus, the permissions
of a user change over time and depending on the user location. To analyze STR-
BAC and the system that it protects, the authors propose an approach based
on using UML and OCL language to model STRBAC components and the sys-
tem. The UML model is, then, translated into an Alloy 1 specification that can
be automatically analyzed using the Alloy Analyzer which has embedded SAT-
solvers. The results of the analysis indicate the level of protection provided by
the STRBAC model for the given system.

In [25], Toninelli et al. a semantic context-aware access control model. The
context includes information about the resources accessed, the actors and the
surrounding environment, and it is modeled in Web Ontology Language (OWL).
The policies life cycle consists of three distinct phases: policy specification, pol-

icy refinement, and policy evaluation. In the policy specification phase resource
administrators specify OWL-based policies representing ontological associations
between actions and contexts ontology definitions. The protection contexts may
have attribute values assigned to constants or may be variables. In the latter case,
attributes are assigned proper values by combining DL-based and LP-based rea-
soning over the context ontology and a set of context aggregation and activation
rules. In particular, the output of LP rules is fed into the DL knowledge base
to determine the value of each attribute given the current context. OWL-based
policies can be viewed as policy types: they define the actions that are allowed
in a set of context types. In the policy specification phase, administrators have
to define aggregation and evaluation rules to enable effective enforcement and
adaptation of OWL policies. In order to be enforced in the real world, policies
need to be instantiated by adapting them to the current state of the world, in
order to obtain the set of applicable policies. Once the set of applicable policies
is determined, the contexts of applicable policies are verified against the cur-
rent state of context elements as measured by sensors to determine the set of
currently active policies.

In [8], Convington et al. extend RBAC model with a new type of role called
environment role. Environment roles capture relevant environmental conditions
that are used for restricting and regulating user privileges. Environment are
active when the conditions that define the roles are satisfied in the current envi-
ronmental state. Accesses to resources are granted to users if users are assigned
to a role who has the permission to access the resources and to an environment
role that is active at the moment of the access request is submitted. Clearly, per-

1 Alloy is a is a fully declarative first-order logic language designed for modeling and
analyzing complex software systems.



missions may change for a single users accessing a resource if the environmental
conditions vary between requests.

Zhang et al. [26] propose Dynamic Role Based Access Control (DRBAC) an-
other access control model that extends RBAC with context information. Con-
text information includes environment of the user such as location, time that the
user access the resource and system information such as CPU usage and net-
work bandwidth. The privileges that users have changes based on such context
information. The possible roles which can be assigned to a user and the permis-
sions that are assigned to a role are modeled as state machines. The transitions
represent the events that trigger the change in the assignment of roles to users
and the assignment of permissions to roles. Transitions trigger because an event
occur which is generated by a Context Agent in response to a change in context
information. Thus, Zhang et al. provide a way to represent the changes that can
occur in their model but they do not propose an approach to analyze the impact
of such changes.

Bertino et al. [5] present GEO-RBAC, an extension of RBAC model to deal
with spatial and location-based information. GEO-RBAC relies on the OGC
spatial model to represent (spatial) objects, user positions, and geographically
bounded roles, making the approach quite standard and flexible. Another impor-
tant characteristic of the model is the ability to deal with either real positions,
obtained from a given mobile terminal or a cellular phone, and logical ones, pos-
sibly represented at different granularities. GEO-RBAC is based on the notions
of features, role schema and spatial role. Features are entities of the real world
that may occupy a position and are characterized by a type. A role schema
defines some common properties of a set of spatially aware organizational func-
tions with a similar meaning. A role schema not only defines a common name
for a set of spatial roles but also constrains the space where roles can be en-
abled, the so called role extent. Moreover it specifies the type of logical locations
and ultimately the granularity of the position that the users playing that role
may occupy. A spatial role is a role schema instance. Users are assigned spatial
roles, that can be activated during a session. Unlike RBAC, roles are enabled
only when the user position is contained in the role extent. Finally, like RBAC,
GEO-RBAC supports the notion of role hierarchy that allows a role to inherit
permissions from its ancestor roles, users from its descendant roles, and roles to
be enabled when descendant roles are.

In [16] Kulkarni and Tripathi present CA-RBAC, a context-aware RBAC
model that extends RBAC in several directions. The model supports personalized
permissions for role members, and context-based constraint specification as part
of - dynamic binding of objects with active space services, user admission to
roles, permission executions by role members, and granting access to a subset of
a services resources based on a role members context information. The model also
supports revocation of a users membership in a role when context conditions fail
to hold. Based on this model, the authors have developed a role-based framework
for programming secure context-aware pervasive computing applications.

Bertino et al. [4] propose Temporal-RBAC (TRBAC), an extension of RBAC



models that supports temporal constraints on the enabling/ disabling of roles.
TRBAC supports periodic role enabling and disabling, and temporal dependen-
cies among such actions. Such dependencies expressed by means of role triggers
(active rules that are automatically executed when the specified actions occur)
can also be used to constrain the set of roles that a particular user can ac-
tivate at a given time instant. The firing of a trigger may cause a role to be
enabled/disabled either immediately, or after an explicitly specified amount of
time. Enabling/disabling actions may be given a priority that may help in solv-
ing conflicts, such as the simultaneous enabling and disabling of a role. They
also propose a polynomial algorithm to verify whether TRBAC specifications
are safe that is they are free from ambiguities.

In another work, Bertino et al. [3] present an access control model in which
periodic temporal intervals are associated with authorizations. Permissions are
often limited in time or may hold only for specific periods of time. An authoriza-
tion is automatically granted in the specified intervals and revoked when such
intervals expire. Deductive temporal rules with periodicity and order constraints
are provided to derive new authorizations based on the presence or absence of
other authorizations in specific periods of time.

5 Resiliency to Change

Another aspect related to the evolution of an access control system is the re-
siliency to absence of users.

In [18], Li and Wang introduce a new type of policies denoted as resiliency

policies in the context of access control systems. Resiliency policies state prop-
erties about enabling access in an access control system rather than restricting
access as access control policies do. Intuitively, a resiliency policy specifies a fault
tolerance requirement with respect to a certain critical task. A resiliency policy
consists of the set of permissions that are needed to carry out the task, the num-
ber of absent users the system should tolerate, and the number of the disjoint
sets of users such that the users in each set together possess the permissions to
perform the task. The authors discusses the Resiliency Checking Problem that
consists in determining whether an access control state satisfies a given resiliency
policy. In the general case such problem and several sub cases are intractable
(NP-hard), but the authors identify two sub cases that are solvable in linear
time.

6 Conclusions

In this survey we have discussed the evolution of access control models and how
it is related to the evolution of software systems. In particular, we have first
identified the causes of the evolution of an access control model. Then, we have
provided an overview of the main proposals about the evolution of access control
models. From the analysis of these proposals, we can conclude that to analyze



access control models evolution there is the need for a policy framework based on
a first-order logic whose semantics can be represented as state machines. State
machines are suitable for representing the events that trigger the evolution of
access control policies. Moreover, most of the proposals deal only with changes
in the authorization models caused by changes in the environment. Policy evo-
lution due to changes at requirements, design and implementation level has not
been investing. Thus, analyzing the dependencies between evolution of access
control models and evolution of requirements, design and implementation is an
interesting future research direction.
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